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a b s t r a c t

An effective integration method is proposed for a generalized nonlinear plasticity. The core of this study
is to reduce the system of constitutive equations into a set of fewer scalar ones, which could be solved
with a great many numerical integrations. The Optimal Implicit Strong Stability Runge–Kutta methods
are suggested for this purpose due to their substantial features, such as precision, stability, and
robustness. The qualities of the new approach are clearly discussed in a wide range of numerical tests
comprising accuracy, efficiency, stability, and convergence rate assessments. Moreover, an initial
boundary value problem is solved utilizing the proposed approach in practice. In addition to the
implementation of the Optimal Implicit SSP Runge–Kutta methods, the Exponential Map integration is
also advanced for the cyclic plasticity as a measure for the numerical tests, likewise, the Euler's
integrations to conclude the study. The results demonstrate the superiority of the suggested technique.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In a nonlinear elastoplastic finite element analysis, the materi-
al's behavior is contingent on the deformation history. This gives
rise to incremental nonlinear equilibrium equations. Solving this
set of nonlinear equations requires an iterative procedure, such as
Newton–Raphson, in which strain histories are continually pro-
duced. Having these strain histories, the finite element method
updates the stresses via integrating the constitutive equations.
Basically, the constitutive laws provide relationships for the
stresses in terms of the deformation history. These equations are
typically nonlinear and complicated particularly when cyclic
responses are due to consider. Therefore, nonlinear plasticity
models are needed to precisely simulate the real behavior of the
structure. The usage of nonlinear isotropic and kinematic hard-
ening laws, such as those of the Chaboche, is strongly recom-
mended in plasticity model to take account of ratcheting and
transient stress–strain behavior of the material. These are two
important phenomena most materials experience under cyclic
loading [7]. Consequently, the predominant account in integrating
the constitutive equations is the use of numerical integrations for
the lack of analytical solutions to these problems. The accuracy
and cost of the finite element analyses are closely related to the
precision and robustness of the numerical integrations.

Many efforts have been carried out to develop more precise and
efficient integrations over the years owing to the importance of
the issue. Of the earliest attempts in this field, Wilkins [53]
suggested the radial return-mapping integration. Rice and Tracy
[42] used his technique to study the elastoplastic deformation of a
crack tip proceeded by Krieg and Key [25] to take account of linear
isotropic and kinematic hardenings. Later on, Krieg and Krieg [26]
proposed an exact integration for the elastic perfectly plastic von-
Mises plasticity. The main part of their work was to define an angle
between the stress state and strain increment. Their method was
extended by Schreyer et al. [44] to a plasticity with hardening.
Later, Yoder and Whirley [55], Ortiz and Popov [33], and Runesson
et al. [43] performed comparative investigations between different
integration schemes showing the superiority of the return map-
ping algorithms. Meanwhile, Nagtegaal [32] first discerned the
role of consistent tangent operators in achieving the quadratic
convergence rate in implicit finite element codes which was
followed by Simo and Taylor [45,46] and Dodds [12]. Two exact
integrations were also proposed by Loret and Prevost [31] and
Sloan and Booker [47] for Drucker–Prager [15] and Mohr–Coulomb
plasticity models under certain circumstances, respectively. After-
wards, Genna and Pandolfi [16], Hopperstad and Remseth [20],
and Wei et al. [54] presented integration schemes based on the
radial return mapping and Prandtl–Reuss elastoplastic models.
Hong and Liu [17–19] originally addressed the possibility of
converting the constitutive equations into the concise form of
_X¼AX. This helped [6] introduce the Exponential Map integra-
tion. Meantime, Sloan et al. [48] integrated the constitutive
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equations using an explicit Runge-Kutta technique with automatic
error control. Kobayashi and Ohno [23] and Kobayashi et al. [24]
used the closest projection method to offer implicit integrations
for cyclic plasticity models. Subsequently, Liu [28–30] developed
two exponential based integrations. Artioli et al. [3–5] and Rezaiee
Pajand and Nasirai [34,35] improved the accuracy and conver-
gence of the Exponential Map integrations. Later on, Clausen et al.
[11] and Kan et al. [21] proposed two implicit integrations based
on the return mapping strategies. Furthermore, expanding the
procedure originally introduced by Krieg and Krieg [26], Wallin
and Ristinmma [51,52,49], Szabó and Kossa [50] utilized Runge–
Kutta methods to solve the constitutive laws. Afterwards, Rezaiee
Pajand et al. [36–38] advanced the Exponential Map integrations
to the von-Mises and Drucker–Prager plasticity models with linear
isotropic and kinematic hardenings. They derived the consistent
tangent moduli of their integrations in a recent study [40]. More-
over, they suggested two consistent exponential schemes for
integrating nonassociative Drucker–Prager constitutive equations
[41]. Meanwhile, Rezaiee et al. [39] introduced a new integrating
algorithm defining an angle between the back stress and the
stress state.

In the present study, it is intended to develop an integration
scheme based on the works of Krieg and Krieg [26,39] for the
nonlinear cyclic plasticity. The main difference, here, is to develop
an integration method which takes account of generalized non-
linear kinematic and isotropic hardening laws. These are vitally
important for simulating plastic strain accumulation, called ratch-
eting, and the stabilization of yield surface radius under cyclic
loading. These become possible through Chaboche's nonlinear
kinematic and isotropic hardening models which account for
multiple back stress tensors along with a nonlinear function for
the yield surface radius. Herein, a number of angles are defined
between the components of the back stress tensor and the
deviatoric stress. Thereby, the initial constitutive equations are
reduced to much fewer differential equations. As a result, the new
system could be solved through a wide variety of numerical
integrations. As a new measure, the recently introduced Optimal
Implicit Strong Stability Runge–Kutta methods are implemented to
achieve great stability together with very precise updated stresses,
even at exceptionally large load-step sizes. For the sake of
comparison, the equations are also solved using the explicit
Runge–Kutta methods alongside the exponential and classical
Euler's integrations. The advantages of the suggested approach
are demonstrated through numerical tests comprising diverse
stress updating tests, stability investigation, and a typical initial
boundary value problem.

2. Constitutive laws

A general plasticity model includes the following fundamental
equations in the small strain realm:

Fðσ; aÞ ¼ 0 ð1Þ

σ ¼De : εe ð2Þ

ε¼ εeþεp ð3Þ

_εp ¼ _γ
∂Q
∂σ

;Q ðσ; aÞ ð4Þ

_κ¼ � _γ
∂Q
∂a

; a¼ �ρ
∂ψp

∂κ ð5Þ

_γZ0; Fr0; _γF ¼ 0 ð6Þ

_σ ¼Dep _ε ð7Þ

Here, Eqs. (1) and (2) represent the yield function and the elastic
law, respectively. Strain tensor is decomposed into elastic, εe, and
plastic, εp, parts. The plastic flow rule is given by Eq. (4) where _γ
and Q stand for, respectively, plastic multiplier and plastic poten-
tial function in terms of the Cauchy stress, σ, and the hardening
thermodynamic force, a. Expressions in (5) provide a general
description of hardening laws with κ representing the set of the
hardening internal variables and ρψp as the plastic part of
Helmholtz free energy per unit mass. The plastic multiplier is
obtained deploying the loading/unloading criterion (6):

_γ ¼ ∂F=∂σ : De : _ε
∂F=∂σ : De : ∂Q=∂σþ∂F=∂anDn∂Q=∂a

; D¼ ρ
∂2ψp

∂κ2
ð8Þ

where n symbolizes a proper product between ∂F=∂a, D and ∂Q=∂a.
Utilizing the definition (7) together with the aforementioned
equation, the elastoplastic tangent modulus reads:

Dep ¼De� ðDe : ∂F=∂σÞ � ðDe : ∂F=∂σÞ
∂F=∂σ : De : ∂Q=∂σþ∂F=∂anDn∂Q=∂a

ð9Þ

3. Plasticity model

In light of the general approach given, the constituents of the
plasticity model considered in the study are written as:

F ¼ s0s0 �R2 ¼ 0;R¼
ffiffiffi
2

p
ðτy�βp0Þ40 ð10Þ

_ep ¼ _γs0 ð11Þ

_εpv ¼ 2β _γðτy�βp0Þ ð12Þ

_τy ¼ bðτy;0þτy;s�τyÞ _γ ð13Þ

_α¼ ∑
m

i ¼ 1
_αi; _αi ¼Hkin;i _e

p�Hnl;i _γαi ð14Þ

_p¼ ∑
m

i ¼ 1

_pi; _pi ¼
2
3
Hkin;i _γβðτy�βp0Þ�Hnl;i _γpi ð15Þ

The plasticity is a general model composed of Drucker–Prager
yield criterion, Eq. (10), associative flow rule, Eqs. (11) and (12),
together with the Chaboche's nonlinear isotropic and kinematic
hardenings, Eqs. (12)–(15). Here, R represents the yield surface
radius and τy is the yield stress in pure shear. The variables e, s0, α
and εv, p0, p designate the deviatoric and volumetric parts of the
strain, ε, shifted stress, σ0, and back stress, a. These are concluded
from the following decompositions:

ε¼ eþεv
3
i; εv ¼ trðεÞ ð16Þ

σ0 ¼ s0 þp0i; p0 ¼ trðσ0Þ
3

ð17Þ

σ ¼ σ0 þa ð18Þ

a¼ αþpi; p¼ trðaÞ
3

ð19Þ

The subsequent expressions are formulated using Eqs. (2),
(3) and (6) along with the aforementioned equations:

_s0 ¼ 2G_e�2G _γs0 þ ∑
m

i ¼ 1
Hnl;i _γαi ð20Þ

_p0 ¼ K _εv�2β _γΚðτy�βp0Þþ ∑
m

i ¼ 1
Hnl;i _γpi ð21Þ
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