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a b s t r a c t

In this work the on-line unbalance parameter identification problem in a rotor-bearing system is dealt by
an algebraic approach. The system has two disks asymmetrically located along the shaft which is
supported by a conventional ball bearing at one end and by an active suspension at the other one. The
Finite Element Method (FEM) is used in order to obtain a reduced order model for the rotor-bearing
system. The identification process is carried out on-line and the proposed method requires only the
lateral shaft displacements at the disks' location measurements to estimate both, disturbance forces
caused by unbalance and eccentricity parameters. FEM model and identified unbalance parameters are
used to synthesize an active control scheme in order to attenuate the lateral vibration amplitudes in the
rotor-bearing system. Numerical results show the fast convergence of the estimated parameters and
disturbances to the real ones and considerable reductions in vibration amplitudes when the system
passes through its first critical speed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

At present, dynamic models and numerical simulations are
very important tools in the design and analysis of rotating
machines, so that it is necessary to get models which represent
real systems' behavior with a good precision. The accuracy of a
model is determined by comparing the response of the model and
the response of the real system to the same input signal [1]. In
rotating machines the presence of mass unbalance is inevitable.
This unbalance causes centrifugal forces of which magnitudes
depend on the rotor mass, angular speed and distance between
geometric center and center of mass of the rotor (eccentricity)
[2,3]. Eccentricity represents one of the most difficult parameters
to measure or to estimate in a rotor-bearing system and, conse-
quently, it is an important source of less of accuracy for its
mathematical model [4].

Different approaches to solve the problem parameters' identi-
fication in rotor-bearing systems have been proposed. Yuan-Pin
and An-Chen [5] developed a method for estimating unbalance
distributions of flexible shafts and constant eccentricities of rigid
disks based on the transfer matrix method. They presented
numerical results for a system with only a disk and operating to

constant speed. De Queiroz [6] presented a method to identify the
unknown unbalance parameters of a Jeffcott rotor based on a
dynamic robust control technique, in which the disturbance forces
are estimated and then, from these forces, the magnitude and
phase of the unbalance are obtained. This strategy is proved by
numerical simulations and the rotational speed of the machine has
to satisfy the persistency of excitation condition in order to
guarantee the convergence of the method. Mahfoud et al. [7]
proposed a method to identify the matrices of a state variable
model for rotordynamics systems using curve fitting techniques
and optimization procedures based on least-squares methods,
measuring the full state vector (displacement, speed and accel-
eration). The external forces can be found proposing an inverse
problem from the model with the matrices previously determined.
Sudhakar and Sekhar [8] estimated the unbalance faults in a
Jeffcott-like rotor system with a fault identification approach,
obtaining good results in both numerical and experimental ways,
showing the need of new methods and techniques to solve the
unbalance parameters estimation problem.

The main source of undesired vibration in rotating machinery is
the mass unbalance in rotating parts [2,3]. This phenomenon can
cause an unacceptable level of vibration with failures in the
bearings, high levels of noise, wearing in the mechanical compo-
nents and, eventually, dangerous failures in machines and, hence,
control systems are needed to reduce the vibration amplitudes to
acceptable values for a safe machine operation. For these purposes,
many passive, semi-active and active devices have been proposed
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(see, e.g., [9–13]). In general, a control scheme for vibration
attenuation in rotating machinery is synthesized using a system
model, so that, it is very important that the model represents the
real system behavior with good accuracy, for this, it is necessary to
have certainty in the model parameters. However, in contrast to
many engineering systems, the rotor system models based on FEM
are complex to be used in control engineering because of their
large number of degrees of freedom. In addition, in rotor-bearing
systems few measurements are available and unknown system
parameters like eccentricities and exogenous forces are commonly
present. In this context, asymptotic observers or state estimators
can be designed, from measurements of the input and the
response of the rotor-bearing system, to provide an approximation
of the system states or disturbances that cannot be directly
measured (see, e.g., [2,14,15]).

In this work, an on-line estimation scheme for the unbalance
forces using asymptotic state observers is proposed for an asym-
metrical rotor-bearing system with two unbalanced disks. For
this estimation method, only measurements of the radial shaft
displacements at disk locations are needed. The eccentricity in
each disk can algebraically be estimated through the unbalance
forces exciting the overall system. This estimation approach is
used to design an active control scheme for attenuation of the
vibration amplitude in the rotor-bearing system, particularly when
it passes through first critical speed. Some numerical results are
presented in order to show the dynamic and robust performance
of the proposed estimation and control schemes.

2. Dynamical model of the rotor system with active
suspension

The rotor-bearing system considered in this paper is shown in
Fig. 1. The rotor-bearing system has two disks asymmetrically
located along the shaft, which is supported by a conventional ball
bearing at left end and by an active suspension at the right one.

The rotor-bearing system model is obtained by finite element
methods, using elements' type Euler beam and the consistent
matrices' approach described by Genta [16]. The system has three
elements, four nodes and two degrees of freedom per node, with
one radial displacement and one angle denoting the shaft deflec-
tion. One node is located at each support and one node at each
disk location. Applying the boundary conditions to the model, that
is, considering as rigid the left support, the generalized coordi-
nates describing the rotor are then given by

u¼ ½βy1 Rx2 βy2 Rx3 βy3 Rx4 βy4�

where βyi and Rxi are the shaft deflection angle and radial
displacement in each node, respectively. The above system coor-
dinates can describe the horizontal plane of motion; the vertical
plane can be similarly modeled.

The active suspension mass and stiffness, disks mass and
moment of inertia, are considered as lumped parameters at their
corresponding degrees-of-freedom. Therefore, the system

dynamics is described by the equations of motion

M €uþD _uþKu¼ bf ðtÞþe1ϖ1ðtÞþe2ϖ2ðtÞ; uAR7; f ðtÞAR ð1Þ
whereMAR7 and KAR7 are the global mass and stiffness matrices
respectively and DAR7 is a proportional damping matrix. These
matrices are symmetric and positive definite and, therefore, the
unperturbed rotor-bearing system is asymptotically stable (see,
e.g., [14]). In addition, ϖ1ðtÞ and ϖ2ðtÞ are disturbance harmonic
and synchronous forces caused by the unbalance at both disks and
f(t) is the control force provided by the active suspension, and the
vectors

b¼ ½0 0 0 0 0 1 0�T
e1 ¼ ½0 1 0 0 0 0 0�T
e2 ¼ ½0 0 0 1 0 0 0�T

denote the corresponding degree-of-freedom or channel where
the control force and unbalance forces are entering into the
system, respectively.

By defining the state vector z¼ ½u _u�T AR14, the rotor-bearing
system dynamics (1) can be described in state space form as
follows:

_z ¼AzþBf ðtÞþE1ϖ1ðtÞþE2ϖ2ðtÞ; zAR14; f ðtÞAR ð2Þ
with matrices

A¼ 0 I
�M�1K �M�1D

� �
B¼ 0

M�1b

� �
E1 ¼

0
M�1e1

" #

E2 ¼
0

M�1e2

" #

The rotor-bearing system parameters are shown in Table 1. For
these parameters the perturbed rotor-bearing system (2) is com-
pletely controllable from the control force f(t).

The dynamic behavior of the undamped system in free vibra-
tions is given by

M €uþKu¼ 0; uAR7 ð3Þ
and solving the so-called characteristic equation detð�ω2Mþ
KÞ ¼ 0 we obtain the system natural frequencies

ω1 ¼ 39:99 Hz¼ 2399:7 rpm
ω2 ¼ 274:11 Hz¼ 16;447 rpm
ω3 ¼ 836:34 Hz¼ 50;181 rpm

Fig. 1. Rotor system with active suspension.

Table 1
Rotor-bearing system parameters.

Parameter Value

Shaft density, ρ 7850 kg m�3

Shaft diameter, d 0.02 m
Mass per length unit, m 2.466 kg m�1

Disks masses, md 1, md 2 3.9 kg
Disk diameters, d1, d2 0.1508 m
Element length, L1 0.25 m
Element length, L2 0.35 m
Element length, L3 0.15 m
Elasticity module, E 211 GPa
Area moment of inertia of shaft, I 7.854�10�9 m4

Mass moment of inertia per length unit of shaft, j 6.1654�10�5 kg m
Mass moment of inertia of disks, Jd 1, Jd 2 0.0057 kg m
Eccentricity of disk 1, a1 9�10�5 m
Eccentricity of disk 2, a2 11�10�5 m
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