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a b s t r a c t

This paper, in line with the previous study [23], is concerned with the finite element implementation of
nanoplates. However, in this contribution free vibration responses of multicrystalline nanoplates by
considering surface effects are presented. Nanomaterials and nanostructures have been receiving
widespread attentions during last decades. This fact is due largely to surprising, peculiar, and impressive
mechanical; electrical; and physical behaviors of nanostructures. Currently, nanostructures such as
nanoplates are being utilized in the designing and manufacturing Nanoelectromechanical systems
(NEMS) and Microelectromechanical systems (MEMS). Furthermore, silicon, thanks to its exceptional
mechanical, physical, and electrical properties is extensively employed in the NEMS and MEMS. The
mechanical properties and responses of nanoplates are intensely size-dependent, and in contrast to
plates with macro dimensions, static and free vibration responses of nanoplates strongly depend on the
size of nanoplates. In this study, a rectangular multicrystalline plate with nanothickness; arbitrary
geometry, and boundary conditions is analyzed. Each crystal of the nanoplate is assumed to be
anisotropic, and a prominent point that must be taken into consideration is the interface region, which
exists between every two crystals. The free vibration responses of nanoplate such as natural frequency
are considered, and the influence of size, surface effects, interface region, and various boundary
conditions over natural frequency of the nanoplate is considered. Due to the fact that geometry of the
multicrystalline nanoplate is not straightforward to be dealt with the governing equations, the finite
element method is employed to obtain the results of free vibration response. Moreover, we succeed to
employ ANSYS software in order to attain the free vibration responses of multicrystalline nanoplates. In
addition, the present finite element method results, the code of which is generated in MATLAB, are
compared with those obtained from ANSYS software, and the correlation of the results is quite
remarkable.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In contrast to mechanical properties of macrostructures, the
mechanical properties of nanostructures such as Modulus of
elasticity, Poisson's ratio, natural frequency, to name but a few,
are intensely dependent on the size and dimension of the
nanostructures. Hence, make predictions about mechanical prop-
erties and behaviors of nanostructures that are quite complicated.
Due to the fact that the energy of atoms in the bulk of nanos-
tructures differs from that of the surface, surface effects namely
surface elasticity (Es), surface residual stress (τS), and surface mass
density (ρS) appear in the analysis of nanostructures. Numerous
investigations have been done in order for the mechanical proper-
ties of nanoplates, nanobeams, nanotubes, and nanowire to be

attained. The effects of surface and interface stresses on the
mechanical behaviors and responses of thin films were studied
by Stoney [1]. Zhang et al. studied bending of nanobeams by
considering surface effects [2]. Wang and Zhao studied self-
buckling and bending behaviors of nanoplates by considering the
significance of surface effects [3]. Besides this contribution, a
theoretical model is presented by Guo and Zhao so as to determine
size-dependent bending properties of nanobeams [4]. In addition,
they presented a three- dimensional theory in order to investigate
the size-dependent elastic constants of thin films [5]. They
introduced not only a parameter to define the ambiguity of
nanofilms thickness, but also a relaxation coefficient to modify
the lattice constant of surface atoms. Furthermore, by considering
the inward or outward surface relaxation effects, the increasing
and decreasing elastic modulus with the decrease of size can be
predicted.

A simulation on the mechanical behavior of nanostructures and
by employing molecular dynamics was presented by Liu and
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coworkers [6]. Wong and coworkers established the mechanical
properties such as young's modulus, strength, and toughness of
nano rods and nano tubes [7]. Surface effects alter the mechanical
properties and behavior of nanostructures. For instance, when the
thickness of layers in a nanostructure decreases, the modulus of
elasticity may decrease or increase [8–11]. Interface region, which
plays a leading role in the analysis of multicrystalline nanostruc-
tures, may possess different structures and properties as compared
to its neighboring material. Some notable studies have been done
on the interface region [12–15].

The development of fundamental theory of elasticity which is
used in the analysis of nanostructures was presented by Gurtin
and Murdoch [16]. They also presented the effects of surface stress
in solids and structures [17]. In contrast to macrostructures,
nanostructures may be deformed, although external loads may
not exist. This tendency to deformation in the absence of external
loads is directly related to surface residual stress. Dunham and
Gurtin presented a theoretical theory on the effect of τ0 on the
deformation of crystals [18]. Based on the multiscale dynamics,
Choi and coworkers presented a multiscale dynamic model to
investigate the dynamic behavior and natural frequency of nano-
sized thin films [19]. In addition, the dynamics behavior and
natural frequency of buckled thin films by considering surface
effects as well as residual surface stress was studied by Wang and
Feng [20]. Employing theoretical relations of nanostructures are
intensely limited to systems of elementary geometry and bound-
ary conditions. Consequently, it is much more appropriate that
alternative approaches such as the finite element method (FEM) to
be implemented. Thus this work is presented by employing FEM.
Developing the basic and fundamental relations of FEM by con-
sidering surface effects was proposed by Gao and coworkers [21].
Tian and Rajapakse presented finite element relations for aniso-
tropic material and for structures with arbitrary geometry [22].
Mouloodi, et al. presented the static responses of multicrystalline
nanoplates by considering surface effects [23]. They ascertained a
notable procedure in order to analyze nanoplates in ANSYS soft-
ware. In addition, the deformation of nanostructures due to
surface effects, and by implementing the finite element method
was studied by Javili and Steinmann [24–25]. So as to attain the
modal responses of the multicrystalline nanoplate, elementary
relations are derived, and FEM code is generated. Ultimately, the
multicrystalline nanoplate is simulated in ANSYS software. In the
analysis, it is assumed that the multicrystalline nanoplate is made
of silicon, which is a prevalent material in designing nanostruc-
tures. The values of silicon surface effects, the mechanical proper-
ties of silicon, and its amorphous properties have been studied by
numerous researchers [26–35]. In this contribution, a nanoplate
which is consisted of several crystals with different mechanical
properties and various surface effects is taken into account. Owing
to the presumption that the nanoplate is made of silicon, the
interface region is the amorphous of silicon. The natural frequency
of multicrystalline nanoplate is presented. Moreover, the effects of
nanoplate thickness; positive and negative surface elasticity; and
the effect of amorphous width on the values of natural frequency
are portrayed.

2. Fundamental and governing equations

In order to obtain the free vibration responses of nanoplate, a
multicrystalline nanoplate of nanothickness is assumed, as shown
in Fig. 1. Each crystal of the nanoplate is assumed to be ortho-
tropic, and with respect to the mechanical properties of silicon, the
natural frequency of multicrystalline nanoplate is presented.

As it is mentioned, in designing as well as analyzing multi-
crystalline plates, existence of interface region is indisputable.

In this study the interface region is presumed to be the amorphous
of crystal materials. Due to the fact that the crystals are assumed to
be made of silicon, therefore, interface region is the amorphous of
silicon. Surface effects are prominent factors in the analyzing
multicrystalline nanoplate due to the high ratio of surface to
volume of the nanoplate. Accordingly, the fundamental equations
of surface must be taken into consideration along with the
fundamental equations of bulk.

2.1. Constitutive relations

It is assumed that the surface covers top and bottom of the
multicrystalline nanoplate, are shown in Fig. 2. In order to
consider the behavior of bulk materials, the classical theory of
continuum mechanics is employed

½s� ¼ ½c�½ε� ð1Þ
where, [s] and [ε] demonstrate the stress and strain matrix,
respectively, and [c] demonstrates the stiffness tensor for the
anisotropic case.

As previously mentioned, it is presumed that the case of
orthotropic occurs for the nanoplate. In addition, plane stress case
is employed for nanoplates. Regarding these presumptions, Eq. (1)
can be expressed as
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Therefore, the stiffness matrix of bulk material, which is used in
the finite element relations, can be derived as

s¼ ½Db�ε ð3aÞ

½Db� ¼

Ex
1� υxyυyx

υxyEx
1� υxyυyx

0
υxyEx

1� υxyυyx

υxyEy
1� υxyυyx

0

0 0 Gxy

2
6664

3
7775 ð3bÞ

In order to consider surface effects, which plays a leading role
in analyzing nanoplates, a stiffness matrix for the surface of the
nanoplate must be derived. Gurtin and Murdoch [16] presented
the linear stress–strain equation for the surface of nanostructures,
which definitely can be implemented for multicrystalline nano-
plates,

ss
αβ ¼ τ0δαβþ2ðμs�τ0Þεαβþðλsþτ0Þεkkδαβ ðα; β¼ 1;2Þ ð4Þ

where,sS
αβ and εαβ denote the surface stress and the surface strain,

respectively, λS and μS are the Lame's constants of the surface, τ0 is
the surface residual stress at zero strain. Surface residual stress
plays a leading role in the analysis of nanostructures, and its
effects on the mechanical behaviors of nanostructures cannot be
overlooked. Wang et al. investigated the effects of surface tension
on the elastic properties of nanostructures [36]. They investigated
the influences of surface tension and surface residual stress, which
is induced by surface tension, in the bulk of nanostructures.
Moreover, they deemed that surface residual stress is so significant
that it cannot be overlooked for certain cases.

A stress–strain relation is attained for the surface of multi-
crystalline nanoplate, by developing the Eq. (4)

ss
xx

ss
yy

ss
xy

2
64

3
75¼

2μsþλs�τ0 λsþτ0 0
λsþτ0 2μsþλs�τ0 0

0 0 2ðμs�τ0Þ

2
64

3
75

εsxx
εsyy
εsxy

2
64

3
75þ

τ0

τ0

0

2
64

3
75 ð5Þ

S. Mouloodi et al. / International Journal of Mechanical Sciences 85 (2014) 160–167 161



Download English Version:

https://daneshyari.com/en/article/782350

Download Persian Version:

https://daneshyari.com/article/782350

Daneshyari.com

https://daneshyari.com/en/article/782350
https://daneshyari.com/article/782350
https://daneshyari.com

