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ABSTRACT

In the present work, the buckling and vibration of rectangular single-layered graphene sheets is
analyzed based on the nonlocal theory of elasticity which takes the small scale effects into account. The
graphene sheet is assumed as a thin plate, and the classical plate theory is applied to obtain the
differential equation of the sheet. For the first time, the complex finite strip method is employed to study
the vibration and buckling behavior of graphene sheets. The weighted residual method is employed to
obtain the stiffness, stability and the mass matrices of the graphene sheet which is assumed to be an
isotropic nanoplate. A sinusoidal displacement function is used for the longitudinal direction, which
satisfies the simply supported boundary condition, while piecewise interpolation polynomials including
the Hermitian and bubble functions are assumed for the other direction. A matrix eigenvalue problem is
solved to find the vibration frequency and buckling load of graphene sheets subjected to different types
of in-plane loadings including the uniform and non-uniform uniaxial and biaxial compressions as well as
shear loading. The accuracy of the proposed model is validated by comparing the results with those
reported by the available references. Furthermore, a number of examples are presented to investigate
the effects of various parameters (e.g., boundary conditions, nonlocal parameter, aspect ratio, and type of

loading) on the results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The number of studies on nanostructures and their applications
has been rapidly increasing in the scientific community during the
last decades. Carbon nanotubes (CNTs) and Graphene sheets (GSs)
are the two most cited nanostructures. CNTs, which were dis-
covered in 1991 by lijima [ 1], have many potential applications due
to their great mechanical, chemical, thermal, electrical and elec-
tronic characteristics [2]. Graphene, which was obtained by Geim
and his colleagues in 2004 [3], is also another famous type of
carbon nanomaterial with a two-dimensional structure. It pos-
sesses many excellent properties including good flexibility and
high thermal and electrical conductivities [4,5]. Because of their
unique characteristics, the application of these nanostructures is
rapidly growing in different areas [6-8]. Therefore, analyzing and
understanding the different behaviors of these nanostructures is
very important and necessary for an effective design. For this
purpose, different experimental, analytical and numerical meth-
ods have recently been implemented. These approaches can be
categorized as atomistic-based methods and continuum-based
methods. Although the results of atomistic-based methods such
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as molecular dynamics (MD) simulation [9,10], tight-binding
molecular dynamics [11] and density function theory [12] are
more realistic, these methods are computationally expensive, as
they involve a large system of atoms. On the other hand, the
experimental methods are difficult to implement in most cases.
These reasons have prompted the researchers to develop appro-
priate mathematical models for the analysis of nanostructures. The
classical continuum mechanics theories have been recently
applied to nanostructures in order to develop appropriate math-
ematical models that can provide rational results. However,
experiments do not confirm the results obtained from the classical
continuum mechanics models. It has been shown that the beha-
vior and mechanical properties of nano-materials are influenced
by scale effect or size effect. Therefore, to achieve accurate results,
the small-scale effects must be considered. Different size-
dependent continuum theories such as the couple stress elasticity
theory [13], strain gradient theory [14], micro-morphic theory [15]
and the surface energy incorporated continuum theory [16] have
been developed. Recently, the use of the nonlocal elasticity theory
(first proposed by Eringen [17-19]) in the analysis of nanostruc-
tures has received significant interest. In this theory, the inter-
atomic forces and the internal length scale are considered in the
formulation. The small-scale effects are captured by assuming that
the stress at a reference point is a function of the strain field at
every point in the domain. The results of nonlocal models are in
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accordance with the atomistic results of lattice dynamics and MD
simulations [20]. A large number of nonlocal model-based studies
that focus on the static bending, dynamic vibration and the
stability analysis of nano-structures have been reported. These
include the analyses of nanobeams [21-24], nanotubes [25-30],
nanorods [31], nanorings [32] and nanoplates [33-35].

Graphene sheets, as a group of nanostructures, have been the
subject of many research works. Due to the increasing applications
of GSs, understanding their mechanical behaviors is essential for
proper engineering design and manufacture. In most of the
studies, a graphene sheet is considered as a nanoplate. Different
vibration and buckling studies of single- and multi-layered gra-
phene sheets with and without the surrounding elastic medium
have been reported in the literature [36-61]. These papers have
mostly applied the nonlocal elasticity theory and used different
methods such as the differential quadrature method (DQM) and
the finite element method (FEM).

The present work is focused on studying the buckling and
vibration behaviors of single-layered graphene sheets (SLGSs) by
means of the bubble complex finite strip method (BCFSM) in
which the bubble functions are employed to improve the accuracy
and efficiency of the method. In comparison to other numerical
methods such as the FEM, the finite strip method (FSM) provides
more efficient formulations for the investigation of plate behavior
under different loads and boundary conditions. The FSM was first
introduced by Cheung [62]. Later, Przemieniecki used this method
to predict the initial local buckling stresses of plate assemblies
under biaxial compression [63]. Plank and Wittrick employed the
complex finite strip method (CFSM) to investigate the buckling of
thin, flat-walled structures under combined loading [64]. Azhari
and Bradford [65-68] used bubble functions and employed differ-
ent versions of the finite strip method to study the local buckling
and post-local buckling of plates and plate assemblies. Bubble
functions are the finite element shape functions that are zero at
the boundary of the element, but nonzero at the other points.
These functions have been used in order to augment the finite
element formulations to achieve faster convergence.

Sarrami and Azhari [69] used the ordinary finite strip method
to analyze the vibration and buckling behavior of SLGSs and
MLGSs, incorporating the nonlocal effects in the formulation. The
results show that in comparison with other nonlocal approaches,
e.g. DQM, the nonlocal FSM employs less degrees of freedom to
obtain the accurate results. In this research, the application of
BCFSM in the study of buckling and vibration behaviors of
rectangular SLGSs is investigated for the first time. The vibration
of SLGSs as well as their buckling behavior under uniform and
non-uniform uniaxial compressive loading, uniform biaxial load-
ing and uniform shear loading is considered. Moreover, the
present methodology considers the influence of small scale effects
on the vibration and bucking of SLGSs. The effects of length, aspect
ratio and nonlocal parameter are considered in the results.

This paper is organized as follows. In Section 2, Eringen's
nonlocal theory of elasticity and its application in classical plate
theory is reviewed. In Section 3, the mathematical formulation of
the bubble complex finite strip method is presented and the
method is developed to study the buckling and vibration of
single-layered graphene sheets. Section 4 includes the numerical
results and discussions. Finally, some concluding remarks are
presented in Section 5.

2. Theory

The aim of this part is to introduce Eringen's nonlocal theory of
elasticity and its application in classical plate theory.

2.1. Nonlocal theory

According to the nonlocal elasticity theory [17-19], the rela-
tionship between stress and strain is expressed as

G = /V A%~ X, 7)Cie @)V, )

where gy, ¢y and Cjy, are the stress, strain and the fourth order
elasticity tensors, respectively. A(]x —X’|, 7) is the nonlocal modulus
or attenuation function which incorporates the nonlocal effects
into the constitutive equations; |x—x'| represents the Euclidean
form of the distance between x and X/, and z is a material constant
that depends on the characteristic length ratio [;/l., where [; is an
internal characteristic length (e.g., lattice parameter, granular
distance, distance between C-C bonds) and [, is an external
characteristic length (e.g., crack length, wave length). The material
constant is defined as r=egli/le and could be evaluated by
experimental results or molecular dynamics (MD) simulation
results. Parameter eq strongly depends on the complicated internal
microstructures of nanomaterials; it is estimated such that the
relations of the nonlocal elasticity model could provide satisfac-
tory approximations of the atomic dispersion curves of plane
waves with those of the atomic lattice dynamics [52].

An equation in differential form is used as an alternative to
Eq. (1), because it is difficult to deal with integral constitutive
equations. This equation, which is the basis of all the nonlocal
constitutive formulations, is expressed as

I'ajj = Cijrens (2)

where I' denotes the nonlocal operator and is represented by
Eringen as

r=1-uv2, 3)

in which y = (egl;)> and V2 is the Laplacian operator. Therefore, the
equation of nonlocal elasticity is represented as

(1-puV?)0ij = Cien- 4

Eq. (4) could be used in various one-, two- and three-
dimensional nanoscale problems.

2.2. Nonlocal differential equation of SLGS

A SLGS could be considered as a nanoplate. Fig. 1 shows a SLGS
and the corresponding rectangular continuum nanoplate model.

According to the nonlocal elasticity theory, the stress-strain
relationship for a 2D isotropic nanoplate is

O xx Oxx E 1 v 0 Exx
Oyy —MVZ Tyy = 1_—1/2 v 1 0 Eyy 5, (5)
Oxy Oxy 0 0 3¢ ey

where E and v are the modulus of elasticity and Poisson's ratio of
the GS, respectively. According to the classical plate theory (CPT),
the displacement field at an arbitrary point is expressed by [70]

U(Y, 2,0 = UK.y, 0~ 2 (Y, 0

V(X,Y,Z,t) =V(X,y,t) —za—w(x, y,t)
9y
WX, y,z,t) = W(X,y,t) (6)

in which u, v and w are the components of displacement vector in
the mid-plane along the X, y and z directions, respectively; and ¢t
denotes the time. The strain-displacement relations are determined
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