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a b s t r a c t

The benchmark bending solutions of rectangular thin plates with a corner point‐supported are obtained
by an up-to-date symplectic superposition method within the framework of the Hamiltonian system.
The developed method offers a rational way to obtain the solutions of corner point supported thin plates
with sufficient accuracy. Appropriate extension of the method can also yield more benchmark solutions
of the similar problems. Comprehensive numerical results are presented for future validation of various
approximate/numerical methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Rectangular thin plates with a corner point-supported have
recently attracted the authors’ attention because they are of
importance in both mechanical and civil engineering. Extensive
applications such as the solar panels, printed circuit boards, slate
roofs, aircraft and aerospace components are frequently encoun-
tered and widely used. The lack of contributions on the benchmark
bending solutions for these plates motivates the present work.

Actually, the approximate/numerical methods have been
adopted to analyze the problems of some point-supported plates.
Rajaiah and Rao [1] applied the collocation method to present a
series solution to the problem of laterally loaded square plates
simply supported at discrete points around its periphery. Shan-
mugam et al. [2] proposed an approximate method to predict the
bending behavior of uniformly loaded rhombic and isosceles
triangular orthotropic plates supported at corners based on the
principle of minimizing the total potential energy and the use of a
polynomial deflection function. Raamachandran and Reddy [3]
developed the charge simulation method to solve the bending
problem of a circular plate fixed at a number of points along its
edge, which was somewhat similar to the boundary element
method. Aksu and Felemban [4] used the finite difference energy
method to examine the free vibration characteristics of corner

point supported Mindlin plates based on the variational procedure
in conjunction with the finite difference method. Azarkhin [5]
found a series solution for the bending of thin plate with three-
point support, with the unknown constants to be determined by
the condition of minimum potential energy. A very simple closed-
form expression for the deflection of the free corner was provided.
Kitipornchai et al. [6] presented the solutions of free flexural
vibration of corner supported Mindlin plates of arbitrary shape
with a hybrid numerical approach combining the Rayleigh-Ritz
method and the Lagrange multiplier method. Gutierrez and Laura
[7] adopted the method of differential quadrature to analyze the
transverse vibrations of rectangular thin plates with point sup-
ports. Static beam functions were introduced by Cheung and Zhou
[8] and Zhou [9], respectively, to derive the eigenfrequency
equations of point-supported rectangular composite plates as well
as plates with variable thickness by using the Rayleigh-Ritz
approach. Zhao et al. [10] studied the problem of plate vibration
under complex and irregular internal support conditions via the
discrete singular convolution method [11,12]. Huang et al. [13]
offered a discrete green function method for free vibration analysis
of rectangular plates with point supports. Altekin [14] investigated
the bending of orthotropic super-elliptical plates on intermediate
point supports. The Ritz method was used and the total potential
energy functional was modified by introducing the Lagrange
multipliers to improve the accuracy of the stress resultants.

In comparison with the prosperity of approximate/numerical
solutions, analytical solutions are scarce for point-supported plates’
problems. Singhal and Gorman [15] obtained the free vibration
frequencies and mode shapes of partially clamped cantilevered

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2014.05.004
0020-7403/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author at: State Key Laboratory of Structural Analysis for
Industrial Equipment, Department of Engineering Mechanics, Dalian University of
Technology, Dalian 116024, China.

E-mail address: ruili@dlut.edu.cn (R. Li).

International Journal of Mechanical Sciences 85 (2014) 212–218

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.004
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.004
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.05.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.05.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.05.004&domain=pdf
mailto:ruili@dlut.edu.cn
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.004


rectangular plates with rigid point supports by an analytical
procedure based on the method of superposition. Lim et al. [16]
developed the analytical solutions for bending of rectangular thin
plates supported only at its four corners by the symplectic elasticity
approach [17], in which the free boundaries with corner supports
were dealt with using the variational principle.

As far as the authors know, the analytical bending solutions to the
title problems have not been reported in the literature, which is
probably due to the mathematical complexity of such boundary
value problems. Although the well-established approximate/numer-
ical methods could cover these problems with acceptable errors, the
analytical solutions provide the benchmarks, which plays an irre-
placeable role in both theoretical and engineering aspects.

A novel Hamiltonian system-based symplectic superposition
approach [18] is further developed in this paper to analytically
provide the benchmark solutions of rectangular thin plates with a
corner point-supported and its opposite edges clamped, simply
supported, or one of its opposite edges clamped and the other one
simply supported. The proposed approach furnishes a rational
rigorous derivation to obtain the analytical solutions of the
fundamental plate bending problems while avoids the numerical
solution of complex transcendental equations, therefore, it com-
bines the advantages of the symplectic approach and the super-
position method. The accuracy of the present solutions are
validated by those from the finite element method (FEM) via
more than 200 numerical results.

2. Hamiltonian system-based governing equation

The Hellinger-Reissner variational principle for the bending
problem of a thin plate is

δΠH�R ¼ 0 ð1Þ
where the generalized potential energy functional with two kinds
of variables is
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herein q is the distributed transverse load, v is the Poisson's ratio,
D is the flexural rigidity, w is the transverse deflection of the plate
midplane, Mx and My are the bending moments, Mxy is the
torsional moment, Qx and Qy are the shear forces, Vn is the
equivalent shear force. C1 denotes the clamped edge, C2 the simply
supported edge, and C3 the free edge; n and s are respectively the
directions normal and tangential to the edge of the plate. w, ψn,
Mn and Vn are the known deflection, slope, bending moment and
equivalent shear force, which are all functions of the arc length of
the plate edge. Assuming the independence of Mx, My, Mxy and w
and the arbitrariness of their variation, Eq. (1) yields the basic
equations as well as the boundary conditions of the plate.

Eq. (1) gives the natural conditions of stationary ΠH�R, two of
which are
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Without regard to the line integrals, substituting Eq. (3) into Eq.
(2) gives a functional denoted by Πn:
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Define
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and the Lagrange multiplier T, the functional Πn is transformed
into a new functional ΠH:
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Assuming the arbitrariness of δT , δMy, δw and δθ,

δΠH ¼ 0 ð7Þ

yields
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over the plate domain.
From Eq. (8d),
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which identifies the physical meaning of the Lagrange multiplier
T: the opposite of the equivalent shear force Vy.

The variational principle (7) is a form of the Hamiltonian
variational principle for thin plate bending.

Equations (8a–8d) are written as
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state vector. f ¼ ½0;0; q;0�T is the vector with respect to the

external load q. Observing HT ¼ JHJ, where J¼
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symplectic matrix in which I2 is 2� 2 unit matrix, H is a
Hamiltonian operator matrix [19] thus Eq. (10) is the Hamiltonian
system-based governing equation for thin plate bending.
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