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a b s t r a c t

This paper presents an analytical solution for the linear elastic buckling analysis of simply supported
battened columns subjected to axial compressed loading. The critical buckling load is derived by using
the classical energy method. Unlike most of existing work, the present approach considers not only the
shear effect but also the discrete effect of battens on the global buckling behaviour of the columns. The
present analytical solution is validated using the data obtained from the finite element analysis. The
results show that the number of battens has significant influence on the critical buckling load of battened
columns, particularly when the relative rigidity of the batten to the main member is small. It is shown
that the critical buckling load increases with the number of battens, the combined bending and shear
rigidity of battens, but decreases with the increased membrane stiffness of the two main members, and
the increased distance between the centroids of the two main members.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Built-up columns and stitched struts are widely used in steel
construction especially when the effective lengths are great and
the compression forces are relatively small. These columns are
usually composed of two or more parallel main members inter-
connected by lacing or batten plates (see Fig. 1, for example).
As the moment of inertia of the built-up cross section increases
with the distance between the centroids of the main members, the
built-up column normally has large bending rigidity and large
resistance against global buckling. However, compared to the solid
column with the same moment of inertia, the built-up column has
weak shear stiffness and thus is more flexible, which in turn can
significantly reduce its global buckling resistance.

Consideration of shear deformations in the elastic buckling
analysis of columns subjected to compressive loads was first
proposed by Engesser (1889), who extended Euler's buckling for-
mula for prismatic straight columns made of anisotropic material by
including shear deformations. Engesser's formula predicts an upper
limit sometimes referred to as the shear buckling load as the
slenderness is reduced [1]. Engesser's pioneering work was followed
by Haringx (1948), who derived an alternative buckling formula
which predicted an infinite buckling load as the slenderness
approached zero [1]. There has been a long debate in literature on
which shear deformations should be included in the analysis of
column buckling (see, for example, [2–9]). Experimental data and
more advanced analyses have suggested that Haringx's formula is
suitable for applying to short rubber rods and helical springs,

whereas Engesser's formula is appropriate for applying to sandwich
columns, laced columns, castellated columns and the columns with
batten plates or with perforated cover plates [1,4,5–8].

The buckling of built-up and/or battened columns has been
investigated extensively in last decades. The work includes the
out-of-plane buckling [10], torsional-flexural buckling [11], and
interactive buckling [12] of battened columns. The buckling of
battened columns with tapers [13] and the effect of shear [14,15]
on the buckling behaviour of battened columns were also studied.
Experimental results on the buckling of the laced and battened
columns were reported in [16–18]. In addition, studies on the
structural performance of built-up and battened columns under
various different loadings were also accomplished [19–23].

In this paper an analytical approach using the energy method is
presented to determine the critical buckling loads of battened
columns. Unlike most of existing work, the present approach
considers not only the shear effect but also the discrete effect of
battens. A simple close-form solution for determining the critical
buckling load of simply supported battened columns subjected to
axial compression load is developed. The critical load derived is
validated using finite element analysis methods. The present
analytical solution highlights the importance of taking into
account the discrete effect of battens on the global buckling of
battened columns.

2. Formulation of critical buckling loads

Consider a battened column with the length l¼na, where a is
the distance between two neighbouring battens or stitches, nþ1 is
the total number of battens along the column length, as shown in
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Fig. 2a. When it is subjected to a compressive load the column may
buckle. Assume the buckling to occur only in the x–z plane for
which case the buckling mode can be characterized by the long-
itudinal and transverse displacements of the upper and lower main
members of the column. Assume that, during the buckling, the
upper and lower main members deform according to Bernoulli's
hypothesis. Let u1(x) and u2(x) be the axial displacements of the
centroids of the upper and lower main members, and w(x) be their
transverse displacement (i.e. the two members have the same
transverse displacement). According to the sectional displacement
assumptions shown in Fig. 2b, the axial displacement at any point at
a section with distance x from origin can be expressed as follows:

For the upper main member

utðx; zÞ ¼ u1ðxÞ�ðzþeÞdw
dx

ð1Þ

For the lower main member

ubðx; zÞ ¼ u2ðxÞ�ðz�eÞdw
dx

ð2Þ

where e is the half-distance between the centroids of the upper
and lower main members. The axial strains in the two main
members can be obtained using the strain–displacement relation
as follows:

For the upper main member

εtðx; zÞ ¼
∂ut

∂x
¼ du1

dx
�ðzþeÞd

2w
dx2

ð3Þ

For the lower main member

εbðx; zÞ ¼
∂ub

∂x
¼ du2

dx
�ðz�eÞd

2w
dx2

ð4Þ

The strain energy of the two main members due to the axial
and transverse displacements can be expressed as follows:

U1 ¼
E
2

Z l

o

Z
A
ε2t dAdxþ

E
2

Z l

o

Z
A
ε2bdAdx ð5Þ

where E is Young's modulus and A is the cross-sectional area of the
main member. Substituting Eqs. (3) and (4) into (5), it yields

U1 ¼
EA
2

Z l

o

du1

dx

� �2

þ du2

dx

� �2
" #

dxþEI
Z l

o

d2w
dx2

 !2

dx ð6Þ

where I is the moment of inertia of the main member.
Let Δ be the generalized shear displacement, which is defined

in terms of the strain energy of the battens caused by the axial and
transverse displacements of the main members. The geometrical
relation between the centroids of upper and lower main members
indicates that,

Δ¼ 2e
u1�u2

2e
�dw

dx

� �
ð7Þ

It is obvious that if Δ¼0 the batten has rigid displacements only
and therefore there is no strain energy generated. This means that
the strain energy of the battens can be calculated based on the
generalized shear displacement Δ.

Assume that the batten itself can be modelled as a Timoshenko
beam with a length of lb¼2e. Owing to the rigid connections
between battens and main members, the end boundaries of the
batten beam have to be restrained in its rotational degree of
freedom. In this case the relative deflection between the two ends
of a batten beamwhen subjected to a pair of unit loads in opposite
directions at its ends can be expressed as follows:

δb ¼
lb
GAs

þ l3b
12EIb

ð8Þ

Fig. 1. Examples of built-up columns. (a, b) Channel-sections battened on flanges, (c) angle-sections battened on four sides, and (d) I-sections battened on flanges.
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