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a b s t r a c t

An exact closed-form analysis for describing the natural vibrations of a FG moderately thick spherical shell
panel is developed. The strain–displacement relations of Donnell and Sanders theories are used to obtain the
exact solutions. The shell has two opposite edges simply supported (i.e., Lévy-type). The material properties
change continuously through the thickness of the shell, which can vary according to a power-law distribution
of the volume fraction of the constituents. The new auxiliary and potential functions are employed to exactly
decouple the governing equations of the vibrated spherical shell panel, leading to the exact closed-form
frequency equation in the form of determinant. The accuracy and validity of the solutions are established
with the aid of a 3D finite element analysis as well as by comparing the results with the data reported in the
literature. The effects of various stretching–bending couplings on the frequency parameters are discussed.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the curvature of the middle surface, spherical shell
panels are very stiff for both in-plane and bending loads. Therefore,
they are largely used in many engineering structures, including
pressure vessels, ship hulls, containers of liquids, pipes, missiles and
many other structures. It is noticeable that the analysis of shells has
difficulty related to the curvature, which is also the reason for the
carrying load capacity of these structures. These shells are often
subjected to dynamic loads that cause vibrations. Hence, it is very
important to have an accurate procedure for the free vibration
analysis of such structures.

Many of the shell theories were developed based on the classical
shell theory (i.e., CST) and the linear elasticity concepts. Love was the
first investigator to present a successful approximation thin shell
theory based on the classical linear elasticity [1]. The Love theory of
thin elastic shells is also referred to as the first-order approximation
shell theory. Donnell [2] established the nonlinear theory of circular
cylindrical shells under the simplifying shallow-shell hypothesis.
Because of its relative simplicity and practical accuracy, this theory
(referred to as Donnell's nonlinear shallow-shell theory) has been
widely used. But, the equations of this theory are obtained by
neglecting the in-plane inertia, transverse shear deformation and
rotary inertia, giving accurate results only for very thin shells. Also,

Donnell [3], Vlasov [4], and Mushtari [5] independently developed a
simplified engineering theory of thin shells of a general form (this is
also referred to as Donnell–Mushtari–Vlasov theory of thin shells).
Sanders [6] developed the first-order-approximation shell theory
from the principle of virtual work and by applying the Kirchhoff–
Love assumptions. Sanders theory of thin shells has removed
successfully the inconsistencies of the Love theory. Naghdi [7]
analyzed the accuracy of the Love–Kirchhoff theory of thin elastic
shells. The interested reader who wants to be more acquainted with
the shell's history in more details is referred to other works [8,9].

Functionally graded materials (FGMs) are special composites with
material properties that vary continuously through their thickness.
Typically, FGMs are made of a ceramic and a metal in such a way that
the ceramic can resist the severe thermal loading from the high
temperature environment, whereas the metal is served in order to
decrease the large tensile stress occurring on the ceramic surface at
the earlier stage of cooling. Also, the gradual change of the material
properties avoids discontinuities of stresses.

According to the aforementioned FG properties, spherical shell
panels made of FGMs are of great interest for engineering design
and manufacture, recently. But, a beneficial literature review
reveals that analytical and numerical studies on FG spherical shell
panels are, however, rare whereas several studies have been
performed to analyze the mechanical, thermal or the thermo-
mechanical responses of isotropic spherical shell panels. Thus, it is
important to understand the exact dynamic behavior of function-
ally graded (FG) spherical shell panels.
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In many applications of FG spherical shell panels, the thickness
of the shell in comparison with its side is significant and the
thickness to side ratio takes from 0.05 to 0.2. These shells are
known as the moderately thick FG spherical shell panels. Also, it has
long been known that the classical Love–Kirchhoff shell theories are
valid only for thin shells and give proper results for lower
frequencies. In addition, these theories underestimate deflections
and overestimate frequencies. In order to have a reliable prediction
of the response of moderately thick FG spherical shells and to
eliminate the deficiency of the CST, the first-order shear deforma-
tion theory (FSDT), including the effects of transverse shear defor-
mation and rotary inertia, should be employed.

When the equations of motion of a moderately thick FG spherical
shell panel are derived by using the FSDT of shells, these partial
differential equations must be solved through a type of solution
method namely numerical methods (e.g., finite element method,
differential quadrature method, Galerkin method and so on), semi-
analytical methods or exact analytical methods. However, owing to
the mathematical and computational complexities of exact solutions,
a wide range of research has been carried out on free vibration of
spherical shell panels which mostly used a numerical solution
method. Tornabene and Viola [10] studied the dynamical behavior
of spherical shell panels using the FSDT. The numerical solutions
have been computed by means of the technique known as the
Generalized Differential Quadrature (GDQ) Method. Xiang et al. [11]
analyzed the free vibration of laminated composite spherical shells
through the FSDT and a meshless global collocation method. Ferreira
et al. [12] applied the FSDT of Donnell to evaluate the natural
frequencies of cross-ply composite spherical shells through a mesh-
less method. Zenkour [13] investigated the static and dynamic
responses of anisotropic spherical shells under a uniformly distrib-
uted transverse load using a refined mixed first-order shear defor-
mation theory and a numerical method. Based on a finite element
approach, the axisymmetric and non-symmetric vibrations of sphe-
rical shells are analyzed using the thick shell theory by Gautham and
Ganesan [14]. Lim et al. [15] employed the Ritz method to analyze the
free vibration of spherical shell with variable thickness using 2D shell
theory. Pradyumna and Bandyopadhyay [16] analyzed free vibration
of isotropic and functionally graded spherical shell panels using a
higher-order formulation. A C1 finite element formulation is used to
carry out the analysis. Matsunaga [17] analyzed natural frequencies
and buckling stresses of cross-ply laminated composite shallow
shells using a two-dimensional higher-order theory and the method
of power series expansion of displacement components. The elasti-
city solutions for free vibration analysis of spherical shell panels of
rectangular planform are carried out by Liew et al. [18]. The p-Ritz
method is employed to solve the problem. Also, using a numerical
method, the 3D analysis is presented for free vibration of spherical
shell segments with variable thickness by Kang and Leissa [19].
Redekop [20] developed the differential quadrature method to
determine the natural frequencies of vibration of thick orthotropic
spherical shells consisting of a material having a radial variation of
properties using the linear three-dimensional theory of elasticity. Fan
and Luah [21] presented the free vibration analysis of arbitrary thin
shell structures using a newly developed spline finite element. Khare
et al. [22] developed a simple C1 isoparametric finite element
formulation based on a shear deformable model of higher-order
theory using a higher-order facet shell element for the free vibration
analysis of isotropic, orthotropic and layered anisotropic composite
and sandwich laminates. Chern and Chao [23] conducted a three-
dimensional vibration analysis for a variety of simply supported
shallow spherical, cylindrical, plate, and saddle (hyperbolic) panels in
rectangular planform. An energy variational approach according to
minimum total potential energy is used to analyze the problem.

Obviously, all research groups would like to present exact closed-
form solutions for their problems. However, the presentation of this

solution for the vibration problem of isotropic and FG spherical shell
panels was limited to shells with simply supported boundary condi-
tions (the Navier-type solution) [24–28]. Chaudhuri and Kabir [24]
presented a Navier-type solution for free vibration of a general cross-
ply doubly curved panel of rectangular planform using the four
classical shallow shell theories. The paper presented by Rath and
Das [25] is one of the first investigations on the vibration of shells
using higher order shear deformation of theories. They presented the
shell equations in curvilinear orthogonal coordinates for certain types
of layered shells, the effects of shear deformations being included. The
natural frequencies are calculated for symmetrically layered and non-
symmetric cross-ply cylindrical shells having freely supported ends.
Based on the FSDT and using the Sanders shell theory, Reddy [26]
presented an exact solution for vibration and buckling problems of a
simply supported cross-ply laminated spherical shell panel, under
sinusoidal, uniformly distributed, and concentrated point load at the
center. Also, Reddy and Liu [27] developed a higher-order shear
deformation theory for shells laminated of orthotropic layers. The
theory is a modification of the Sanders theory. They presented the
Navier-type exact solutions for bending and natural vibration of
spherical shells. Lee and Reddy [28] developed the third-order shear
deformation theories of laminated composite shells using the strain–
displacement relations of Donnell and Sanders theories. They pre-
sented an analytical (Navier) solution for vibration suppression in
cross-ply laminated composite shells with surface mounted smart
material layers using the linear versions of the two shell theories and
for simply supported boundary conditions. It is noticeable that the
formulation by Reddy and Liu [27] is inaccurate for deeper and thicker
shells. This fact is confirmed by Carrera [29] and Qatu [30]. Biglari and
Jafari [31] used a refined general-purpose sandwich panel theory for
the free vibration analysis of simply supported spherical sandwich
shells. Cinefra et al. [32] presented a closed form solution for free
vibration of simply supported multilayered shells made of function-
ally graded materials using a variable kinematic shell model. Pagani
et al. [33] obtained an exact dynamic stiffness formulation using
one-dimensional higher order theories for free vibration analysis of
thin-walled structures. Qatu [34] presented accurate natural frequen-
cies of simply supported shallow shells for various shapes including
spherical, cylindrical and hyperbolic paraboloidal shells.

To the best of the authors’ knowledge, there is no literature for
exact closed-form solutions of vibration analysis of Lévy-type FG
spherical shell panels based on the FSDT and the authors attempt
to fill this apparent void.

The main objective of this paper is to obtain the exact closed
form solution for free vibration of moderately thick FG spherical
shell panels based on Sanders and Donnell shell theories. For this
purpose, a new exact analytical approach is developed to exactly
solve the governing equations of the shell without any usage of
approximate methods. To demonstrate the superiority and accuracy
of obtained results, the natural frequencies are compared with the
available data in literature and a finite element method (FEM)
analysis. By comparing the obtained results based on Sanders and
Donnell theories with a 3D elasticity analysis [23] and the 3D finite
element model, it is found that Sanders theory can accurately and
efficiently predict the vibration modes of FG spherical shell panel.
Various coupling effects on the frequency parameters are carried
out for different boundary conditions and panel geometry para-
meters using Sanders and Donnell shell theories.

2. Analysis

2.1. Geometrical configuration

Consider a moderately thick FG spherical shell panel of length
a, width b, uniform thickness h and mean radius R. The shell has
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