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a b s t r a c t

Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by a central
circular hole subjected to linearly varying in-plane normal stresses on two opposite edges are
investigated by two-dimensional theory of elasticity using the Airy stress function. The hoop stresses,
strains, and displacements occurring at the edge of the circular hole are computed and plotted.
Comparisons are made for the stress concentration factors for several types of linearly varying in-plane
loading.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous researchers have investigated the mechanical behaviors
of perforated plates, with main concerns being classified into three
categories; stress concentration [1–10], vibration [11–30], and buck-
ling [31–60]. The various discrete methods have been used to study
them. The finite element method [1–4,11–14,29,33,36,44,46–59] is
the most widely used. Diverse methods other than the finite element
method have been used like the complex variable method [5,6],
three-dimensional stress analysis [7–10], the Ritz method [22–27,30],
the boundary element method [15,16], the differential quadrature
element method [17,18], semi-analytical solution method [19–22],
experimental method [38], conjugate load/displacement method [43],
and Galerkin averaging method [45]. Most of the shapes of perforated
holes have three types of circular [1,4,7–9,11,31,32,36,38,44,46–
48,50–60], elliptical [5,6,7,8,9,10,60], and rectangular cutout [5,6,22–
27,30,36,38,43,44,46,47,49,54,57,58]. Exact solutions for perforated
plates with a central circular hole loaded by linearly varying in-
plane normal stresses have not been reported.

In the present study, exact solutions for stresses, strains, and
displacements of a rectangular plate with a central circular hole
subjected to linearly varying in-plane loading are investigated by

two-dimensional theory of elasticity using the Airy stress function.
The hoop stresses, strains, and displacements occurring at the
edge of the circular hole are computed and plotted. Comparisons
are made for the stress concentration factors for several types of
linear varying in-plane normal stresses.

2. Method of analysis

Fig. 1 shows a rectangular plate of lateral dimensions L� h with
a central circular hole of radius of a and subjected to linearly
varying in-plane normal stresses on two opposite edges, and the
rectangular (x,y) and polar (r;θ) coordinate systems. The plate is
assumed to be large compared with the circular hole.

First of all, considering a rectangular plate with no hole
subjected to linearly varying in-plane normal stresses, the stress
components are

s0
xx ¼

∂2ϕ0

∂y2
¼ s0ð1þαÞ

h
yþs0

2
ðα�1Þ

s0
yy ¼

∂2ϕ0

∂x2
¼ 0

s0
xy ¼ �∂2ϕ0

∂x∂y
¼ 0 ð1Þ

where ϕ0 is a fundamental Airy stress function, s0 is the intensity
of compressive stress at y¼ �h=2, and α is a numerical loading
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factor. By changing α, we can obtain various particular cases.
For example, by taking α¼�1 we have the case of uniformly
distributed compressive force. When α¼0, the compressive force
varies linearly from �s0 at y¼ �h=2 to zero at y¼ h=2. For α¼1
we obtain the case of pure in-plane bending moment. With other
α in the range �1oαo1, we have a combination of bending and
compression. Examples of these cases are shown in Fig. 2. For
αo�1 or α41 the problems arising are identical with ones
having �1oαo1.

The Airy stress function ϕ satisfies the governing equation
∇4ϕ¼∇2ð∇2ϕÞ ¼ 0 with no body forces in 2-D plane problems in
elasticity, where the Laplacian differential operator ∇2 is expressed
as

∇2 ¼ ∂2

∂x2
þ ∂2

∂y2
ð2Þ

and ∇4 is the bi-harmonic differential operator defined by

∇4 ¼∇2ð∇2Þ ¼ ∂4

∂x4
þ2

∂4

∂x2∂y2
þ ∂4

∂y4
ð3Þ

in the rectangular coordinates. From Eq. (1), the fundamental Airy
function ϕ0 can be assumed as

ϕ0 ¼ s0ð1þαÞ
6h

y3þs0

4
ðα�1Þy2þAyþBxþC ð4Þ

where A, B, and C are arbitrary integration constants. A linear
function of x or y and a constant in the Airy stress function are
trivial terms which do not give rise to any stresses and strains.
Dropping the trivial terms in Eq. (4), the fundamental Airy stress
function ϕ0 becomes

ϕ0 ¼ s0ð1þαÞ
6h

y3þs0

4
ðα�1Þy2 ð5Þ

Using the relation of

y¼ r sin θ ð6Þ

and the multiple angle formulas

sin 2 θ¼ 1� cos 2θ
2

ð7Þ

sin 3 θ¼ 3 sin θ� sin 3θ
4

ð8Þ

Eq. (5) can be transformed into the bi-harmonic functions as

ϕ0 ¼ s0

24
ð1þαÞ

h
ð3r3 sin θ�r3 sin 3θÞ�3ðα�1Þðr2 cos 2θ�r2Þ

� �
ð9Þ

which satisfies the governing equation ∇4ϕ0 ¼∇2ð∇2ϕ0Þ ¼ 0, where
the Laplacian differential operator ∇2 is

∇2 ¼ ∂2

∂r2
þ1
r
∂
∂r

þ 1
r2

∂2

∂θ2 ð10Þ

and the bi-harmonic differential operator ∇4 is expressed as

∇4 ¼∇2ð∇2Þ ¼ ∂2

∂r2
þ1
r
∂
∂r

þ 1
r2

∂2

∂θ2

� �
∂2

∂r2
þ1
r
∂
∂r

þ 1
r2

∂2

∂θ2

� �
ð11Þ

in the polar coordinates. From the relation between stresses and the
Airy stress function in the polar coordinates, the stress components in
the rectangular plate with no hole subjected to linearly varying in-
plane normal stresses can be calculated as below:

s0
rr ¼

1
r
∂ϕ0

∂r
þ 1
r2

∂2ϕ0

∂θ2 ¼ s0

4
1þα
h

ð sin θþ sin 3θÞ rþðα�1Þð cos 2θþ1Þ
� �

ð12Þ

s0
rθ ¼ � ∂

∂r
1
r
∂ϕ0

∂θ

 !
¼ s0

4
1þα
h

ð cos 3θ� cos θÞ rþð1�αÞ sin 2θ
� �

ð13Þ
Let us return to the original problem of a perforated rectangular plate
by a central circular hole. The total Airy function ϕ becomes

ϕ¼ϕ0þϕn ð14Þ
where ϕn is an Airy stress function to cancel unwanted traction due to
ϕ0 on r¼a. The normal and shear stresses on r¼a must be free as
below

srr jr ¼ a ¼ ½s0
rrþsn

rr�r ¼ a ¼ 0 ð15Þ

srθjr ¼ a ¼ ½s0
rθþsn

rθ �r ¼ a ¼ 0 ð16Þ
Therefore, sn

rr and sn

rθ on r¼a must have terms of sin θ, sin 3θ,
cos 2θ or a constant and have cos θ, cos 3θ, or sin 2θ, respectively,
in order to eliminate the stresses on r¼a due to ϕ0. Tables 1 and 2

Fig. 1. A rectangular plate perforated by a central circular hole loaded by linearly
varying in-plane loading on two opposite edges.

Fig. 2. Examples of in-plane loading sxx along the edge x¼�L/2.

Table 1
Stresses of potential candidates of bi-harmonic functions ϕ.

ϕ srr srθ sθθ

r2 2 0 2
ln r 1=r2 0 �1=r2

r2 ln r 2 ln rþ1 0 2 ln rþ3

r3 sin θ 2r sin θ �2r cos θ 6r sin θ

rθ cos θ �2 sin θ=r 0 0
r ln r sin θ sin θ=r � cos θ=r sin θ=r
sin θ=r �2 sin θ=r3 2 cos θ=r3 2 sin θ=r3

r2 cos 2θ �2 cos 2θ 2 sin 2θ 2 cos 2θ

r4 cos 2θ 0 6r2 sin 2θ 12r2 cos 2θ
cos 2θ=r2 �6 cos 2θ=r4 �6 sin 2θ=r4 6 cos 2θ=r4

cos 2θ �4 cos 2θ=r2 �2 sin 2θ=r2 0

r3 sin 3θ �6r sin 3θ �6r cos 3θ 6r sin 3θ

r5 sin 3θ �4r3 sin 3θ �12r3 cos 3θ 20r3 sin 3θ
sin 3θ=r3 �12 sin 3θ=r5 12 cos 3θ=r5 12 sin 3θ=r5

sin 3θ=r �10 sin 3θ=r3 6 cos 3θ=r3 2 sin 3θ=r3
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