
Numeric-analytic solutions of the smooth and discontinuous oscillator

B. Santhosh, C. Padmanabhan, S. Narayanan n

Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

a r t i c l e i n f o

Article history:
Received 20 October 2013
Received in revised form
23 March 2014
Accepted 18 April 2014
Available online 26 April 2014

Keywords:
SD oscillator
Multi-harmonic balance
Symmetry breaking
Boundary crises
Filippov systems
Event based numerical integration

a b s t r a c t

Earlier works on the smooth and discontinuous (SD) oscillator concentrated mainly on the time domain
analysis using analytical, semi-analytical and numerical integration methods. In this paper, the
frequency domain analysis of the SD oscillator subjected to harmonic excitation which is as important
and giving further insight into the dynamics is carried out. Multi-Harmonic Balance Method (MHBM) in
combination with arc length continuation is used to obtain the periodic solutions and their branches in
the frequency domain for different values of the smoothing parameter α and exciting frequency ω.
Stability of the periodic motions and bifurcation behavior are analyzed using the Floquet theory. For the
discontinuous case, the oscillator is treated as a Filippov system and an event driven numerical
integration method is used to obtain the response. For α41, the dynamics of the SD oscillator is similar
to that of the hardening Duffing oscillator, for α¼ 1, it is like that of the Ueda oscillator and for 0oαo1
it is like that of the Duffing oscillator with double well potential. The SD oscillator exhibits period
1 solutions, higher order periodic solutions, chaotic solutions through symmetry breaking bifurcations,
period doubling and boundary crises in different parameter ranges. Chaos is observed over a larger
frequency range interspersed by narrow windows of higher order periodic solutions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of harmonically excited Duffing oscillator [1] and
Van der Pol oscillator [2] have been studied extensively in the
literature. The nonlinear terms in these oscillators are continuous
in nature. These oscillators exhibit periodic solutions of different
orders, subharmonic and superharmonic solutions and chaotic
motions depending on the parameter values and initial conditions.
Other oscillators with continuous nonlinearities have also been
studied in the literature [3,4]. Approximate methods such as
perturbation method, averaging method, method of multiple
scales and harmonic balance method have been used to obtain
the periodic motions of such systems.

Nonlinearities in physical systems such as the rotor stator
interactions in gas turbines, dry friction damping as in the case
of gas turbine blades with underplatform dampers and shrouded
blade system, complex frictional contact and backlash as in the
case of gear tooth, intermittent separation of tool and workpiece in
metal cutting, switching in electric circuits and hybrid dynamics in
control devices are discontinuous in nature. The differential
equations representing these systems are discontinuous in nature.
These systems are classified into hybrid systems, Filippov systems,
piecewise smooth continuous systems and systems with higher

order nonlinearities [5]. These nonlinear systems when subjected
to harmonic excitation exhibit periodic motions of different orders,
chaotic motions and coexistence of a number of different solu-
tions. Such systems also exhibit discontinuity induced bifurcations
such as sliding, grazing and border collision bifurcations [6].

Analytical, approximate analytic and numeric-analytic methods
have been used to study the dynamics of nonlinear oscillators with
discontinuous nonlinearities. One method to solve the discontin-
uous dynamical systems is by replacing the discontinuous non-
linearity by a smoothing function so that the system can be solved
as a continuous nonlinear system. Narayanan and Jayaraman [7]
studied the vibration in a nonlinear oscillator with Coulomb
damping. The sgn (signum) function is approximated by an arc
tangent function to obtain the periodic and chaotic motions of the
system. Kim et al. [8] studied the effect of smoothing functions on
the frequency response of an oscillator with clearance nonlinearity.
The disadvantage of using smoothing functions is that the differ-
ential equations become stiff and are computationally expensive
and sometimes the original dynamics of the system will be lost
during the smoothing procedure. Wiercigroch [9] represented some
discontinuous systems as approximate continuous systems in a
number of continuous subspaces. The global solution is thus
obtained by gluing together the local solutions in each subspace.
The Filippov method is used to solve dynamic systems with
discontinuous nonlinearities [10]. Event driven methods, switch
model and time stepping methods [11] are used for the solution of
Filippov systems. Apart from numerical integration based methods
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other semi-analytical methods based on harmonic balance and its
variants are also used for the solution of dynamic systems with
discontinuous nonlinearities [12].

Cao et al. [13] proposed an archetypal model of an oscillator for
smooth and discontinuous dynamics. They named it as SD oscil-
lator. The nonlinearity associated with the oscillator is with
reference to its geometric configuration. The nonlinearity can be
classified as smooth or discontinuous depending on the value of a
non-dimensional parameter termed as smoothness parameter (α).
Physically it represents a snap through truss system.

Cao et al. [13] investigated the dynamics of the SD oscillator by
considering both continuous and discontinuous nature of the
oscillator. The equilibrium points of the undamped unforced
oscillator are obtained and classified with respect to the nature
of the solution around the equilibrium for different values of the
smoothness parameter α (α¼ 0;0oαo1;α¼ 1 and α41). The
system has similarities to the double well potential of the Duffing
system for 0oαo1. The discontinuous oscillator has a saddle like
singularity associated with it. Bifurcation diagrams are generated
with α as the parameter for the viscously damped harmonically
excited system. The system has coexisting periodic solutions of
various orders and chaotic solutions. The existence of chaotic
transients leading to periodic solutions for smaller values of α is
explained. Further investigation on the discontinuous oscillator is
presented in [14]. Even though the physical configuration in the
discontinuous case is not possible, a conceptual model capable of
producing rich dynamic behavior is established. The KAM (Kolmo-
gorov–Arnold–Moser) structure of the undamped forced system is
generated. It shows a chaotic sea with quasiperiodic islands. Higher
order periodic solutions are also observed. With the addition of
damping, these quasiperiodic solutions are changed to the corre-
sponding periodic solutions. Bifurcation diagrams generated show
higher order periodic solutions, period doubling route to chaos and
chaotic transients. A semi-analytical method developed in [15] is
used for the numerical solution to avoid numerical difficulties
associated with the discontinuous system. This work considers a
piecewise linear approximation of the SD oscillator. Both smooth and
discontinuous systems are investigated with this approximation.
Close agreement in behavior between the original system and the
piecewise linear system is observed.

The Hopf bifurcation of the SD oscillator near the equilibrium
points is investigated in [16] with an addition of nonlinear
damping and external excitation for both α40 and α¼ 0. Poin-
care–Birchoff normal forms are obtained based on which the Hopf
bifurcations are investigated. For the trivial equilibrium point,
Hopf bifurcation exists only for α41 and non-Hopf periodic
solutions exist for 0rαo1. For the nontrivial equilibria, Hopf
bifurcation exists for 0oαo1 and non-Hopf bifurcation periodic
behavior for α¼ 0. The saddle like singularity found near the
trivial equilibrium point changes to a periodic solution with the
variation of the parameters. The co-dimension of two bifurcation
of the oscillator is investigated in [17]. For α¼ 1, the eigenvalues
associated with the trivial equilibrium point are zero and the
equilibrium point is non-hyperbolic. The bifurcation diagram in
the parameter space α�ζ plane and the corresponding co-
dimension-two behavior near the trivial equilibrium for α¼ 1 is
obtained.

Periodic solutions of the viscously damped harmonically
excited SD oscillator are obtained using an extended averaging
method [18]. The stability of the solutions is investigated using the
Lyapunov method. The solution diagrams are generated for differ-
ent values of the forcing amplitude. Both stable and unstable
solutions are obtained. Stable solutions are validated numerically.

Recently Cao et al. [19] analytically investigated the periodic
and homoclinic solutions of the SD oscillator using irrational
elliptic and hyperbolic functions. The chaotic threshold is found

out using Melnikov functions with respect to the hyperbolic
functions. Other relevant works on the SD oscillator include the
analysis of the oscillator under constant excitation which leads to the
loss of symmetry [20]. The chaotic attractor in this case for both
smooth and discontinuous cases is significantly different from that
without constant excitation. The threshold of the constant excitation
for chaos for the SD oscillator is discussed in [21].

The SD oscillator representing the snap through truss system
has been recently used as a nonlinear vibration absorber in [22]
and also as an energy harvesting mechanism [23].

The above studies are mainly based on the time integration
method and also on the dependence of the parameter α on the
response. Frequency response analysis of the oscillator can give
further and important information of the dynamic behavior of the
nonlinear oscillator subjected to harmonic excitation. The fre-
quency response analysis of the SD oscillator has not been treated
adequately in the literature. This paper presents the dynamics of
the SD oscillator in the frequency domain by systematically
investigating the periodic solutions and the associated bifurcations
providing more insight into the rich dynamics of the oscillator. The
periodic solutions of the SD oscillator subjected to harmonic
excitation are obtained by the multi-harmonic balance method
(MHBM) [24–26]. In the MHBM the periodic solution is expressed
as a truncated Fourier series and substituted in the equations of
motion yielding a residual which is minimized. Subsequent appli-
cation of the Galerkin and Newton–Raphson method leads to the
determination of the Fourier coefficients and the periodic solu-
tions of the SD oscillator. The frequency domain method is
efficiently combined with an arc length continuation technique
to follow a particular periodic solution branch for parameter
variations. Stability analysis based on the Floquet theory [27] is
used to determine the stability of the periodic solutions and the
associated bifurcations of the SD oscillator. Both stable and
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Fig. 1. SD oscillator (redrawn from [13]).
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Fig. 2. Frequency response for α¼ 1:1, f 0 ¼ 0:25, ζ ¼ 0:0141 (____ stable P1, - - - -
unstable P1 and ○ NI).
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