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a b s t r a c t

The nonlinear vibration and parametric instability of the inextensional beam on the elastic foundation

are investigated. Considering the inextensional condition and second-order moment of the subgrade

reaction, the motion equation of the beam on the elastic foundation is obtained via the Hamilton

principle. Then the Galerkin method is applied to obtain the discretized model. The periodic motion is

examined by means of the continuation method. Whereas, the numerical simulation is performed to

study the nonperiodic motion, particular attention is placed on the nonlinear response of two resonant

beams and the parametric instability. Finally, the effects of the boundary conditions and foundation

models on the nonlinear vibration of the beams are discussed.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The beams resting on the elastic foundations can model many
soil-structure interaction (SSI) problems, and have wide application
in many engineering fields. Therefore, it is important to investigate
the vibration problem of the beam on the elastic foundation.

Lai et al. [1] studied the natural frequencies and mode shapes
of the beam on the elastic foundation. Eisenberger [2] studied the
vibration problems of the beam on one- and two-parameter
foundations. Yokoyama [3] determined the vibration character-
istics of the uniform Timoshenko beam on the two-parameter
elastic foundation. Thambiratnam and Zhuge [4] investigated the
free vibration character of the beam on the elastic foundation.
Morfidis [5] presented the analysis on the natural vibration of the
Timoshenko beam on the Kerr foundation. On the other hand,
some studies focused on the dynamic response of the beam on the
viscoelastic or tensionless foundation [6–8].

As a very important topic in structural dynamics, the moving
load problem of the beam on the foundation is of practical
importance in civil engineering. Kim and Cho [9] investigated the
dynamic response and stability of the infinite beam on elastic

foundation subjected to the moving loads. Zheng et al. [10] studied
the stability of the axially compressed beam resting on a viscoe-
lastic foundation with a moving vehicle. Chen and Huang [11]
examined the dynamic characteristics of a railway subjected to a
moving load.

However, very few studies concerned with the nonlinear
vibration of the beam on the foundation. Pellicano and Mastroddi
[12] examined the nonlinear vibration of the beam resting on the
nonlinear foundation. Coskun and Engin [13] studied the non-
linear response of the beam on the nonlinear foundation. Zhu and
Leung [14] studied the nonlinear vibration of the beam on two-
parameter foundation. Moreover, Nayfeh and Lacarbonara [15]
investigated the nonlinear response of the beam on the nonlinear
foundation. Recently, considering the second order moment,
Wang et al. [16] presented a refined model of the beam on the
elastic foundation, and the quadratic nonlinear term and para-
metric excitation term are included. Based on this model, Wang
and his co-workers [17,18] investigated the nonlinear interaction
of the beam on the elastic foundation. Their results showed that
the second-order participation of the SSI may destroy the con-
servation character of the beam-foundation system. However, this
study neglected the effects of the parametric excitation term. In
fact, this term may result in very complex dynamics of the
structure [19–21].

In this study, the nonlinear vibration of the inextensional
beam on the elastic foundation is investigated. Applying the
Hamilton’s principle, the planar model of the inextensional beam
is derived, and it is discretized by the Galerkin method. The
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periodic and nonperiodic motion of the inextensional beam are
examined by numerical results. Moreover, the nonlinear
responses of the hinged-free beam and free-free beam on the
elastic foundation are examined.

2. Continuum model

In this study, we consider a beam on elastic foundation with
length L, width b and height h, as shown in Fig. 1. The in-plane
displacements are denoted by uðx,tÞ and vðx,tÞ along the x and y

directions. Moreover, the beam is assumed to subject to a
uniformly distributed harmonic excitation: pðx,tÞ ¼ P cos ot, with
P and o being the amplitude and frequency.

2.1. Axial strain and inextensional condition

Referring to Fig. 1, the axial elongation of the element is

e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þu0Þ2þv02

q
�1, where the prime indicates the derivative

with respect to x. Obviously, if we assume that the plane sections
are perpendicular to the deformed axis after deformation, the

axial strain of the beam is e¼ e�yk, where k¼ dy=dx and y is the
rotation angle of the cross-section. From the expression of the
axial elongation of the element beam, we can obtain:

cos y¼
1þu0

1þe
, sin y¼

v0

1þe
:

In this case, if we assume that u and v are small, we can obtain:

y¼ arctan
v0

1þu0
¼ v0�u0v0�

1

3
v03þ � � � ,

[22] , where we only keep up to cubic term in the expression of
the rotation angle of the cross section. If we also assume that the
beam is inextensional (e¼0), we can obtain

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v02

p
�1��

v02

2
and k¼ v00 þ

1

2
v00v02: ð1Þ

2.2. Variational formulation

The motion equation of the beam on the elastic foundation can
be obtained by using the extended Hamilton’s principle, which
can be expressed as

d
Z t2

t1

ðT�UÞ dtþ

Z t2

t1

dW dt¼ 0, ð2Þ

where T is the kinetic energy of the beam; U is the strain energy
of the beam; dW is the variation of the virtual work of non-
conservative forces; and d is the first variation.

If we consider the effects of the rotary inertia, the kinetic
energy T can be expressed as

T ¼

Z L

0

1

2
ðm _v2

þ j _y
2
Þ dx, ð3Þ

where the dot indicates the derivative with respect to t; j¼R
ARy2 dA is the rotary inertia; y is the rotation angle of the cross-

section; A and R are the area of the cross-section and mass density

of the beam, respectively; m¼ RA is the mass of the beam per unit
length.

The strain energy U can be written as

U ¼

Z L

0

1

2
EIk2 dx¼

Z L

0

1

2
EI v00 þ

1

2
v00v02

� �2

dx, ð4Þ

where E is the Young’s modulus of the beam; I is the moment of
inertia of the cross-section.

The variation of the virtual work of nonconservative forces dW

can be written as

dW ¼

Z L

0
½ðp�q�c _vÞdvþMdy � dx ð5Þ

where c is the damping coefficient; q is the subgrade reaction.
Depending on the shear character of the soil medium, some different
foundation models, i.e., the Winkler model, Pasternak model, Vlasov
model and Kerr model (see Fig. 1c), are applied to simulate the action
of soil medium. In this case, the subgrade reaction can be described
by a general mathematical form: qðx,tÞ ¼ k0vðx,tÞ�k1v00ðx,tÞ (see
Appendix A). Furthermore, the last term ðMdyÞ is the virtual work
of the second-order moment, due to the component of the excitation
and the subgrade reaction along the longitudinal direction of the
beam (see the insert in Fig. 1). Therefore, the virtual work of the
second-order moment can be written as

Mdy¼ ðMpþMqÞdy¼
ph sin y

2
þ

qh sin y
2

� �
dy: ð6Þ

3. Equation of motion

Substituting Eqs. (3)–(5) into Eq. (2), and using Eq. (6) and the
general expression of the subgrade reaction, carrying out the
conventional procedure of the calculus of variation, we can obtain
the in-plane motion equation of the beam on the elastic foundation

m €vþc _vþEIv0000�j €v 00 þk0v�k1v00|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
linear term

¼ p�
h

2
½v0ðk0v�k1v00Þ�0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

quadratic nonlinear term

�EIðv0v002þv02v000Þ0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cubic nonlinear term

�
h

2
pv0 þ

pv03

2

� �0
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

parametric excitation term

: ð7Þ

Overall, Eq. (7) reflects the contribution of the rotary inertia of
the beam to the linear term ð�j €v 00Þ. Moreover, due to the second-
order moment, additional quadratic nonlinear term and para-
metric excitation term are included in the present model. It
should be pointed out that the present beam-foundation system
includes the beam and part of the SSI, and the quadratic nonlinear
term depends on the foundation parameter ðk0,k1Þ. Therefore,
from the physical viewpoint, the second-order participation of the
SSI may destroy the conservative character of the system.

To obtain more general conclusion, we introduce the following
nondimensional parameters and variables

xn9vn ¼
x9v
L
; l¼

h

L
; J¼

j

mL2
; pn ¼

PL3

EI
; K0 ¼

k0L4

EI
;

Fig. 1. The inextensional beam resting on the elastic foundation: (a) beam on elastic foundation, (b) beam element and (c) foundation models.
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