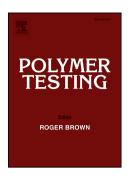
Accepted Manuscript

Novel estimation of morphological behavior of electrospun nanofibers with artificial intelligence system (AIS)

Komeil Nasouri

PII: S0142-9418(18)30547-6

DOI: 10.1016/j.polymertesting.2018.06.001


Reference: POTE 5498

To appear in: Polymer Testing

Received Date: 3 April 2018
Revised Date: 13 May 2018
Accepted Date: 1 June 2018

Please cite this article as: K. Nasouri, Novel estimation of morphological behavior of electrospun nanofibers with artificial intelligence system (AIS), *Polymer Testing* (2018), doi: 10.1016/i.polymertesting.2018.06.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Novel estimation of morphological behavior of electrospun nanofibers with artificial

intelligence system (AIS)

Komeil Nasouri*

Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

ABSTRACT

Electrospun nanofibers could be used as various high-performance devices to evaluate the

new applications. Computational program design along with experimental achievements is

needed for progress of nanofibers synthesis. In this study, artificial intelligence system (AIS)

model has been used to study the morphological properties of electrospun nanofibers based on

empirical data. For program designing, first, the most significant parameters including

polymer concentration, voltage, and needle-to-collector distance on morphological properties

of the electrospun nanofibers are determined, second, various AIS models are developed for

prediction of morphology of electrospun nanofibers, and third, by comparing predictive

validity of the developed AIS models and observed correlation, the best model is selected.

The optimized AIS model with three input parameters, five neurons in first layer with tangent

sigmoid transfer function, and one neuron in the second layer with linear transfer function was

obtained. This model was able to predict the considered coefficient with $R^2 = 0.981$. The AIS

analysis established that concentration of electrospinning solution and needle-to-collector

distance were the main significant parameters altering the electrospun nanofibers morphology.

Based on our best knowledge, the results of this research show that the optimized intelligence

system can evaluate morphological behavior to an excellent level and is in good agreement

with the electrospinning data.

Keywords: Nanofibers; Artificial intelligence system; Experimental data; Optimization;

Prediction

* E-mail address: k.nasouri@cc.iut.ac.ir (K. Nasouri)

1

Download English Version:

https://daneshyari.com/en/article/7824866

Download Persian Version:

https://daneshyari.com/article/7824866

<u>Daneshyari.com</u>