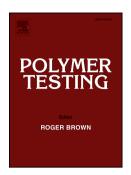
Accepted Manuscript

TD-NMR analysis of structural evolution in PVDF induced by stress relaxation

Maria Marjorie Contreras, Christine Rabello Nascimento, Roberto Pinto Cucinelli Neto, Sylvia Teixeira, Nara Berry, Marysilvia F. Costa, Celio A. Costa

PII: S0142-9418(18)30184-3

DOI: 10.1016/j.polymertesting.2018.03.051


Reference: POTE 5403

To appear in: Polymer Testing

Received Date: 2 February 2018
Revised Date: 19 March 2018
Accepted Date: 30 March 2018

Please cite this article as: M.M. Contreras, C.R. Nascimento, R.P. Cucinelli Neto, S. Teixeira, N. Berry, M.F. Costa, C.A. Costa, TD-NMR analysis of structural evolution in PVDF induced by stress relaxation, *Polymer Testing* (2018), doi: 10.1016/j.polymertesting.2018.03.051.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

TD-NMR analysis of structural evolution in PVDF induced by stress relaxation

Maria Marjorie Contreras^a, Christine Rabello Nascimento^a, Roberto Pinto Cucinelli Neto^b, Sylvia Teixeira^c, Nara Berry^c, Marysilvia F. Costa^a, Celio A. Costa^{a,*}

^aPrograma de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 68505, Brazil

^bInstituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro 68525, Brazil

°Petroleo Brasileiro S.A. Reseach Center (CENPES), Rio de Janeiro 68010, Brazil

*Corresponding author: celio@metalmat.ufrj.br (Celio A. Costa)

Abstract

Poly(vinylidene fluoride) was relaxed at different temperatures (23, 80 and 120 °C) and strains (3.5, 7 and 10%) during 24 h. The material, as processed and all relaxed conditions, was characterized by tensile tests and time-domain nuclear magnetic resonance (TD-NMR). Tensile tests after stress relaxation showed a huge drop in the elastic modulus, varying from 30% to 45% compared to the as processed material. The TD-NMR technique allowed to correlate the variation of the mechanical property with the evolution of the structure inside the material, namely, decrease of crystalline fraction and increase of constrained amorphous region due to the stress relaxation. However, the free amorphous fraction did not undergo a significant change. The structure evolution described above occurred in nanoscale, even for the smallest strain (3.5%) and the lowest temperature (23 °C) tested here, while no visual change was noticed, even for the extreme conditions (10% and 120 °C).

Keywords: Structural evolution, stress relaxation, TD-NMR, poly(vinylidene fluoride).

1. Introduction

Poly(vinylidene fluoride) (or PVDF) is a semicrystalline engineering polymer consisting of long molecular chains formed by a repetition of the molecular unit CH_2 - CF_2 , and alternating crystalline and amorphous regions [1]. The multiple covalent carbon-fluorine bonds give to this polymer excellent thermal stability and chemical resistance, and high mechanical properties [2-6]. These characteristics favor its use in structural applications and in chemically aggressive environments, such as in demanding flexible lines in the offshore industry, where it has to stand different chemicals up to 130 $^{\circ}$ C [7]. PVDF can present five different crystal structures, identified as α , β , γ ,

Download English Version:

https://daneshyari.com/en/article/7824879

Download Persian Version:

https://daneshyari.com/article/7824879

<u>Daneshyari.com</u>