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a b s t r a c t

Parameter identification problems have emerged due to the increasing demanding of precision in the

numerical results obtained by finite element method (FEM) software. High result precision can only be

obtained with confident input data and robust numerical techniques. The determination of parameters

should always be performed confronting numerical and experimental results leading to the minimum

difference between them. However, the success of this task is dependent of the specification of the

cost/objective function, defined as the difference between the experimental and the numerical results.

Recently, various objective functions have been formulated to assess the errors between the experi-

mental and computed data (Lin et al., 2002 [36]; Cao and Lin, 2008 [14]; among others). The objective

functions should be able to efficiently lead the optimisation process. An ideal objective function should

have the following properties: (i) all the experimental data points on the curve and all experimental

curves should have equal opportunity to be optimised; and (ii) different units and/or the number of

curves in each sub-objective should not affect the overall performance of the fitting. These two criteria

should be achieved without manually choosing the weighting factors. However, for some non-

analytical specific problems, this is very difficult in practice. Null values of experimental or numerical

models also turn the task difficult. In this work, a set of novel objective functions for constitutive model

parameter identification are presented. One is a generalization of the work of Cao and Lin and it is

suitable for all kinds of constitutive models and mechanical tests, including cyclic and Baushinger tests

with null values.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the quest for secure input data for simulations and
more specifically for finite element method (FEM) codes is
increasing due to higher demands of industry in obtaining more
reliable numerical results. One of the most important input
data for FEM solvers is the material behaviour, mathematically
described by the constitutive model equations. Due to the large
amount of phenomena required to be described by the FEM codes,
the constitutive material models became complex and generally
include a large number of parameters to be identified for each
specific material.

In the previous decades, inverse methodologies have been
applied in order to improve the reliability of finite element
analysis [1], including metal forming simulations. Even though
the nonlinear parameter estimation was already a subject studied
in the seventies [2,3], the need of determining parameters for
nonlinear constitutive models became an important topic in the
early nineties [4–9]. Furthermore, some works already presented

and discussed the interaction between optimisation and finite
element codes [7,10–12]. In recent times, other works have
contributed to this kind of problems presenting new objective
functions (e.g. [13,14]), using different optimisation methods (e.g.
[15,16]), statistical approaches (e.g. [17]) and the influence of
types of measurements used for the identification process includ-
ing global (inverse analysis) and local (nonlinear regression)
measurement [18]. Currently, the identification of constitutive
model parameters represents a common problem in both scien-
tific and industrial communities.

Parameter identification for constitutive material models can be
accomplished by inverse analysis or/and by nonlinear regression.
The first one generally uses global measurements and finite
element analysis for computing the numerical values while the
second approach can use local or global (average) measurements
and analytical models for the estimation of the corresponding
computed values. This latter approach is also called single-point
analysis. Considering that both finite element method and the
analytical nonlinear constitutive models are governed by partial
differential equations, the main difference between the two
approaches are the time and space integration methods used in
each one. This fact influences the obtained results in the evaluation
of the objective function and afterwards the optimisation process.
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For the nonlinear regression analyses, the numerical methods
generally used to integrate the analytical equations in time are
Runge–Kutta explicit methods with adaptive step and error con-
trol. Although this approach is computationally very inexpensive, it
cannot be used to account for complex experimental tests and
phenomena such as specimen necking or springback.

The finite element analysis using an implicit technique [19]
generally uses Newton’s method as a numerical technique for
solving the nonlinear equilibrium equations. For each time incre-
ment, the implicit methods need to converge leading to a large
computation time when compared with the explicit methods.
However, the explicit methods can iteratively accumulate errors.
For more details on the influence of using both approaches see, for
example, [18]. Within the inverse methods for parameter identi-
fication, the comparison of the quantities measured in the
mechanical test can be made either on the force measured during
the test or including also the displacement field at the surface of
the specimen. Full-field [20,21] methods or, more specifically,
virtual field methods [22,23] are examples of these approaches.

The general methodology for parameter determination of
material constitutive models, as an inverse problem, consists in
the minimization of a function L that represents the difference of
the experimentally observed material behaviour and the mathe-
matical model chosen to reproduce it,

min f ¼LðA,Zc,Ze
Þ

s:t: gðA,Zc,Ze
Þr0

Amin rArAmax, ð1Þ

where A represents the array of parameters that needed to be
determined and Z stands for the set of measured properties, such
as the stress, strain, etc. The superscripts c and e stand for computed
and experimental values, respectively. The function g defines the set
of functions used in the constraints of the optimisation process and
Amin and Amax are the material parameter bounds. The minimization
is achieved with the assistance of optimisation algorithms, whether
they are gradient-based, direct search, metaheuristics or artificial
intelligence-based algorithms. However, all those algorithms and
their efficiency directly depend on the quality of the information
given by the objective function (also called optimisation criterion),
defined as L in Eq. (1).

1.1. Optimisation methodology

In order to determine the best parameters set (the ones that
characterizes better the material) optimisation methods are
applied. The choice of the technique of resolution of the optimisa-
tion problem is crucial because this technique controls the effi-
ciency of the identification method. The three main families of
optimisation algorithms are the gradient-based methods, the
nature-inspired algorithms and artificial intelligence algorithms.
The two last families belong to the class of direct and exploratory
methods. The nonlinear optimisation methods based on the
gradient function can find local minima through iterative processes
guided by the Jacobian (first-order partial derivatives of the
objective function vector) and the Hessian. However, commonly
these are not the absolute minimum values and the final solution is
much dependent of the initial parameters set. These methods are
extensively used due to their efficiency and CPU low cost. The
disadvantage of reaching a local minimum instead of the global
one is not critical in engineering, where larger importance can be
given to the time of reaching admissible errors and to improve the
overall process. The direct search and nature-inspired optimisation
techniques have large probability of finding the global minimum.
However, this is reached at the expense of a lot more time to reach
admissible error levels. Therefore, the gradient-based method is
computationally less expensive. Both optimisation method types,

the gradient-based and the direct search, are fully capable of
successfully determining material parameter sets for mechanical
constitutive models. However, the parameters obtained can be
distinct. This problem can be diminished with the increase of
experimental data and numerical constraints that enforce physical
requirements on the material parameters. The increase of experi-
mental data in order to reduce the problem of non-uniqueness of
the material parameters should be done with different loading
modes tests. Other approach to increase the robustness of the
optimisation methods can be using optimisation strategies (in
sequential, parallel or hybrid strategies depending specifically on
the cost of the objective function evaluation) [18].

Although the results can be affected by the optimisation
algorithm, the choice of the objective function should be inde-
pendent of the optimisation algorithm to use. Nonetheless, the
objective function should be smooth and continuous considering
that gradient-based methods cannot be used with a non-contin-
uous objective function.

1.2. Objective functions for parameter identification

Working as a guide, the objective function (OF) should effi-
ciently find the best fit to the experimental data, always subjected
to some specific constraints. In order to obtain reliable informa-
tion about the difference between the experimental and numer-
ical values the objective function should fulfill some criteria [14]

Criterion 1: the errors of the experimental data should not be
accounted during the parameter identification process. This
could be achieved by eliminating the experimental data points
considered of doubtful quality.
Criterion 2: for each curve, all the experimental points should
be taken in account and should have equal opportunity to be
optimised.
Criterion 3: when using multiple curves, all experimental
curves should also have equal opportunity to be optimised,
independently of the number of points of each curve.
Criterion 4: if sub-objectives are required, the objective func-
tion should be able to deal with the inclusion of these sub-
objectives and their account should be done giving equal
opportunity to the sub-objective to be optimised.
Criterion 5: different units or scales should not affect the
overall performance of the process.
Criterion 6: continuity must be achieved allowing to progres-
sively evaluate the quality of the fitting. Therefore, integer and
discrete functions should be avoided in the formulation of the
objective function.
Criterion 7: the process should not be dependent of the user.
Therefore, the weighting coefficients, useful for achieving
some of the above criteria, should be found automatically.

The above criteria are difficult to satisfy in an automatic manner.
Generally, these are accomplished manually choosing the weight-
ing coefficients and based on the user empirical experience.

When two curves are intended to be correlated, the r-square
function (r2) is often used. The r-square function is based on the
correlation coefficient by Pearson and it reflects an extension of a
linear relation between two data set. The r-square function can be
written for a correlation between the computed and experimental
curve discretized in N points as

f ¼ r2 ¼ 1�

PN
i ¼ 1ðZ

c
i ðAÞ�Ze

i Þ
2

PN
i ¼ 1 Ze

i�
1

N
ð
PN

i ¼ 1 Ze
Þ
2
: ð2Þ

The r-square function ð�1rr2r1Þ tends to the unity when the
quality of the correlation increases. This information can be used
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