Accepted Manuscript

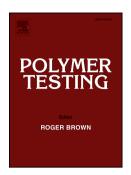
Electrical-thermal-mechanical properties of multifunctional OPV-ETFE foils for transparent membrane buildings

Jianhui Hu, Wujun Chen, Yue Yin, Yipo Li, Deqing Yang, Haiming Wang, Xingxing Zhang

PII: S0142-9418(17)31502-7

DOI: 10.1016/j.polymertesting.2018.01.036

Reference: POTE 5322


To appear in: Polymer Testing

Received Date: 15 October 2017

Accepted Date: 29 January 2018

Please cite this article as: J. Hu, W. Chen, Y. Yin, Y. Li, D. Yang, H. Wang, X. Zhang, Electrical-thermal-mechanical properties of multifunctional OPV-ETFE foils for transparent membrane buildings, *Polymer Testing* (2018), doi: 10.1016/j.polymertesting.2018.01.036.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Electrical-thermal-mechanical properties of multifunctional
2	OPV-ETFE foils for transparent membrane buildings
3	Jianhui Hu ^{a,b,c*} , Wujun Chen ^a , Yue Yin ^a , Yipo Li ^a , Deqing Yang ^{b,c} , Haiming Wang ^d ,
4	Xingxing Zhang ^e
5	^a Space Structures Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
6	^b State Key Laboratory of Ocean Engineering, Shanghai 200240, China
7	^c Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
8	^d Covertex Membranes (Shanghai) Co. Ltd., Shanghai 201612, China
9	^e Department of Energy, Forest and Built Environments, Dalarna University, Falun 79188, Sweden
10	E-mail address of the corresponding author: jtuhjh@gmail.com;
11	Telephone number: +86 021-62932191; Fax number: +86 021-62932193
12	Abstract: ETFE (ethylene tetrafluoroethylene) foils integrated organic photovoltaic cells (OPV)
13	have attracted considerable attention in recent years due to the achievement of sustainability. As
14	building materials, multifunctional OPV-ETFE foils could produce electricity, store thermal energy
15	and possess structural capability. In this case, electrical, thermal and mechanical properties coexist
16	and influence each other due to photovoltaic/thermal effects. Understanding the fundamental
17	mechanism is significant to analyze and design corresponding structures. This paper concerns
18	coupled properties of OPV-ETFE specimens with controlled experiments. One-parameter and
19	two-parameter analysis of two typical specimens are performed to investigate essential properties.
20	Experimental observations show that within normal working conditions, electrical properties are
21	relatively independent but that thermal-mechanical properties are strongly related to each other.
22	Yield stress, yield strain and elastic modulus are calculated from stress-strain curves; these
23	mechanical properties are comparable with those of original ETFE foils at the same temperature. It
24	is concluded from temperature-stress curves that yield point has a critical effect on

Download English Version:

https://daneshyari.com/en/article/7825414

Download Persian Version:

https://daneshyari.com/article/7825414

<u>Daneshyari.com</u>