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The paper aims to investigate nonlinear combined isotropic/kinematic hardening cylinders under
internal proportional pressure by sequential limit analysis. The Armstrong-Frederick kinematic
hardening model is adopted and the Voce hardening law is incorporated for isotropic hardening
behavior. In particular, we establish the kinematic formulation of sequential limit analysis from the
corresponding static formulation by a generalized Holder inequality. Especially, it is found that the
derived kinematic formulation involving combined isotropic/kinematic hardening is equivalent to that
by the bipotential concept. Further, exact solutions of plastic limit pressure were developed analytically
by performing both static and kinematic limit analysis. Finally, the problem formulation and the
solution derivations presented here are validated by a very good agreement between the numerical
result of exact solutions of the present work and the upper bounds from the kinematic formulation
available in literature.

Generalized Holder inequality
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1. Introduction

As it is well known, plastic limit load can be acquired directly
by limit analysis using the static or the kinematic theorem [1]. In
literature, investigation has been extensively made to plastic limit
pressure of perfectly plastic structures (e.g. [2-4]). Further, the
concept of sequential limit analysis has made it possible to deal
with limit analysis problems involving hardening materials by
updating the yield function and the deformed configuration
during the deforming process [5]. It has been illustrated exten-
sively [5-21] that sequential limit analysis is an accurate and
efficient tool for the large deformation analysis. Further, a gen-
eralized Holder inequality [22] has been utilized to establish the
kinematic formulation of sequential limit analysis from the
corresponding static formulation [5,8-21]. By a generalized
Holder inequality [22], we can theoretically confirm the equality
relation between the greatest lower bound acquired by the static
formulation and the least upper bound obtained by the kinematic
formulation [5,8-21]. In the previous studies on effects of iso-
tropic hardening [20,21], the first author analytically solved both
static and kinematic limit analysis problems and acquired exact
solutions for certain problems by confirming the equality relation
between the greatest lower bound and the least upper bound.
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On the other hand, it is noted that real-life materials generally
demonstrate a combined isotropic/kinematic hardening behavior
[23]. Therefore, it is interesting to extend the approach of sequential
limit analysis to consider combined isotropic/kinematic hardening
materials. Recently, Chaaba [24] applied the kinematic formulation of
sequential limit analysis to seek the upper-bound limit pressure of
thick vessels of combined isotropic/kinematic hardening based on the
bipotential concept. By the bipotential concept, Chaaba [25] also
developed both the static and kinematic formulations of sequential
limit analysis involving combined isotropic/kinematic hardening
materials. Accordingly, it is interesting to establish the static and
kinematic formulations of sequential limit analysis to deal with
combined hardening materials based on a generalized Holder
inequality [22]. In the paper, it is aimed to utilize a generalized
Holder inequality [22] to establish the kinematic formulation from
the corresponding static formulation of a sequential limit analysis
problem. Both static and kinematic limit analysis are to be analyti-
cally conducted sequentially to approach the real limit solutions.
Particularly, the equality relation between the greatest lower bound
and the least upper bound is to be confirmed explicitly to acquire the
exact solution of limit pressure.

2. Analytical background

In the paper, we consider thick-walled hollow cylinders made
of materials with nonlinear isotropic and kinematic hardening
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subjected to internal pressure in plane strain conditions. It is
aimed to apply the concept of sequential limit analysis to
investigate plastic limit pressure of the axis-symmetric plane
strain problem. The behavior of nonlinear isotropic and kinematic
hardening is described by the Voce hardening law [26] and the
Armstrong-Frederick kinematic hardening model [27], respec-
tively. Corresponding to the nonlinear combined isotropic/kine-
matic hardening for a von Mises material, the yield function is
denoted as [28]

F(6=X) = \/35-X"") : (S-X"*")—ay (M

where S is the deviatoric stress tensor, X% is the deviatoric part
of the backstress tensor X acting to translate the center of the
yield surface, gy is the yield strength. The yield strength oy is the
isotropic hardening parameter accounting for the change in size
of the yield surface. On the other hand, the backstress X is the
kinematic hardening parameter resulting in the movement of the
center of the yield surface. Accordingly, the yield function can be
completely updated, in terms of the size and the shape, in
sequential limit analysis once the yield strength oy and the
backstress tensor X are prescribed in each step. Moreover, the
shape of the yield surface is unchanged while the combined
isotropic/kinematic hardening model is considered. Therefore, it
is expected that the convexity of the yield function is reserved.

By the Armstrong-Frederick kinematic hardening model [27],
the backstress rate X is described as

X =2Cé—yXe 2)

where C and 7y are the material parameters, ¢ is the plastic strain
rate, £ denotes the equivalent strain rate.

The behavior of nonlinear isotropic hardening is modeled by
the Voce hardening law [26] in the following form:

Oy = 00— (000 —00)eXpP(—he) 3

where gy is the initial yield strength, ¢, is the saturation value of
0o, h is the hardening exponent and ¢ is the equivalent strain.

We consider a thick-walled cylindrical vessel with the initial
interior and exterior radii indicated by aop and by, respectively.
After the action of internal pressure, the current interior and
exterior radii are denoted by a and b in the induced widening
process, respectively. In addition, the cylindrical vessel subjected
to internal pressure assumes the boundary conditions o {r=a)=P;
and o,(r=b)=0 with P; the value of internal pressure and r the
current radius, respectively.

Further, corresponding to the von Mises yield criterion with
the associated flow rule, we have the equivalent stress & and the
equivalent strain rate £ as follows:
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where ¢, g9 and o, are the stress components in the radial,
circumferential and axial directions, respectively. X;, Xy and X, are
the backstress components in the radial, circumferential and axial
directions, respectively. &, &, and &, are the strain rates components
in the radial, circumferential and axial directions, respectively.

Considering plane strain conditions and the incompressibility,
we can further reduce the equivalent stress ¢ and the equivalent
strain rate £ into the following simplified forms:
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On the other hand, due to the axis-symmetry, the strain rate-
velocity relations are given by
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where u, is the velocity component in the radial direction.
Also, we have the incompressibility in plane strain conditions
described in the form

Vil=é4+éy=0 (10

Accordingly, we have the radial velocity indicated in the form
aa

u = an

where a is the velocity of the current interior radius.
Accordingly, we rewrite the equivalent strain rate € in the form

2 aa

The equivalent strain is then obtained as
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where rg is the initial radius of the location concerned.
Combining Egs. (3) and (13), the Voce hardening law [26] can
be rewritten in the form as

2h/V3
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Also, we can obtain the backstress X by solving Eg. (2) with the
initial condition X(0). The components of the backstress rate X
can be described as follows by combining Eqgs. (2) and (7):
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Considering the proportional loading and the initial condition
X(0)=0, the integral form of Armstrong-Frederick kinematic
hardening model [27] can be obtained as follows:
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Note that, the condition that y s 0 is assumed in deriving Egs. (17)
and (18).

By Egs. (14), (17) and (18), respectively, we can obtain the
yield strength oy and the backstress X as functions of the location
r. Accordingly, the yield function is completely updated with the
step-wise constants of the yield strength gy and the backstress X
for sequential limit analysis involving combined isotropic/kine-
matic hardening materials.

3. Static and kinematic limit analysis

As shown in the previous section, the yield strength oy and the
backstress X can be considered as step-wise constants for a given
configuration. Therefore, we can apply the concept of sequential limit
analysis to deal with combined isotropic/kinematic hardening by
updating the yield function and the deformed configuration.

In the following sections, analytical efforts of both static and
kinematic limit analysis are to be made. On the one hand, we seek
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