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irreversible covalent polymers in the absence of the stimuli. In recent years, more and more research
has been devoted to utilization of reversible covalent bonds in synthesizing new materials, which not
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only overcomes disadvantages of permanent covalent polymers, but also brings in new functionalities.
More importantly, a series of novel techniques dedicated to polymerized products with features such
as properties regulation, self-healing, reprocessing, solid state recycling, and controllable degradation
are developed, heralding the opportunity of upgrading of traditional polymer engineering. Although the
exploration of this emerging topic is still in its infancy, the advances so far are encouraging and clearly
directed to large scale applications. This review systematically outlines this promising trend, following
a bottom-up strategy, taking into account both theoretical and experimental achievements. It mainly
consists of four parts, involving design and preparation: (i) the basis of reversible covalent chemistry, (ii)
rheology of reversible covalent polymers, (iii) methods of construction of reversible covalent polymers,
and (iv) smart, adaptive properties offered by reversible covalent chemistry. The key elements for real-
izing reorganization of polymers containing reversible covalent bonds are covered. The advantages and
weaknesses of representative reaction systems are analyzed, while the challenges and opportunities to
engineering application of the equilibrium control based on reversible covalent chemistry for producing
end-use polymers are summarized. In this way, the readers may grasp both the overall situation as well
as insight into future work.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

ished products with desired structure and properties [1,2]. There
are different processing techniques specified for different poly-

Polymer engineering plays a major role in advancement of poly- mers according to their flow behaviors. For thermoplastics, which
mer products and end-user applications. As a key aspect, polymer can be softened or melted by heating, solidified by cooling and
processing is responsible for converting polymers into finally fin- remelted repeatedly because of the linear macromolecules, extru-
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