ELSEVIER

Contents lists available at ScienceDirect

Progress in Polymer Science

journal homepage: www.elsevier.com/locate/ppolysci

Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications

Fu-Jian Xu^{a,b,c,*}

- ^a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- b Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
- ^c Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China

ARTICLE INFO

Article history: Received 12 June 2017 Received in revised form 4 September 2017 Accepted 15 September 2017 Available online 20 September 2017

Keywords: Nucleic acid Delivery vector Ring-opening O-Heterocyclic Amine

ABSTRACT

Safe and effective vectors play an important role in nucleic acid delivery processes. Ring-opening reactions are quite often used to produce biomaterials with various functions and properties. Instead of surfaceconjugated hydrophilic polymers such as polyethylene glycol, uniformly-distributed hydroxyl groups within one polycation could improve biocompatibility and benefit nucleic acid delivery performances. Hydroxyl groups with uniform distribution are readily produced by ring-opening of O-heterocyclic units. O-Heterocyclic units include cyclic ester (epoxide), carbonate and lactones. Hydroxyl-rich polycationic systems are prepared predominately with aminated poly(glycidyl methacrylate) (PGMA). PGMA is the most common epoxy polymer and can be post-modified readily via epoxide ring-opening reactions by different amine species. Hydroxyl-rich polycationic systems are also reported by ring-opening polymerization between various epoxy and amine units. In addition, post hydroxylation of polycations via different O-heterocyclic ring-opening reactions could give rise to various hydroxyl-rich polycationic systems. More recently, versatile types of hydroxyl-rich polycationic systems with special molecular and topological structures, such as linear, star-shaped, comb-shaped, supramolecular, branched, hierarchical, and hetero-nanostructured carriers, are well studied. This review summarizes recent research activities in hydroxyl-rich polycationic systems. Their different design strategies via O-heterocyclic ringopening reactions and unique nucleic acid delivery applications are described in detail. The research activities indicate that hydroxyl-rich polycationic systems become versatile and powerful candidates for the development of advanced multifunctional delivery systems of nucleic acids.

© 2017 Elsevier B.V. All rights reserved.

Contents

1.	Introduction			
2.	Versatile types of hydroxyl-rich polycationic systems from aminated PGMA.			
	2.1. Different amine species for aminated PGMA with rich hydroxyl groups			
2.2. Aminated PGMA-based polycationic vectors with functional molecules				
		2.2.1. Linear PGMA-based gene vectors with terminal functional molecules		
		2.2.2. Star PGMA-based gene vectors with functional molecule cores.	61	
	2.3. Comb polycationic vectors with aminated PGMA for nucleic acid delivery			
		2.3.1. Comb copolymeric gene vectors with aminated PGMA backbones	64	
		2.3.2. Comb PGMA-based gene vectors with natural polymer backbones		
	2.4.	Aminated PGMA-based nucleic acid delivery systems with β -CD cores.		
		Aminated PGMA-based supramolecular systems for nucleic acid delivery		
		2.5.1. Aminated PGMA-based branched supramolecular assemblies		

^{*} Corresponding author at: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. E-mail address: xufj@mail.buct.edu.cn

		2.5.2.	Aminated PGMA-based supramolecular systems with imaging functions	69	
	2.6.	Well-de	rfined hetero-nanostructures with aminated PGMA for multifunctional delivery systems	70	
		2.6.1.	Aminated PGMA-functionalized nanoparticles using a 'grafting from' technique	70	
			Aminated PGMA-functionalized nanoparticles using a 'grafting onto' technique		
			Multifunctional hetero-nanostructures via host-guest assembly		
3.					
			olycations with rich hydroxyl groups by epoxide ring-opening polymerization		
	3.2.	Hyperb	ranched polycations with rich hydroxyl groups by epoxide ring-opening polymerization	79	
4.					
5.					
	Acknowledgements				

Nomenclature ABO Amino-1-butanol Ad Adamantane **AEPP** N-(Aminoethyl)piperazine AIE Aggregation-induced emission APBA Aminophenylboronic acid APO Amino-2-propanol APP N-(3-Aminopropyl)-2-pyrrolidinone **APTES** 3-Aminopropyl-triethoxysilane **ATRP** Atom transfer radical polymerization Gold A11 BD 1.4-Butanediamine BIBA α -Bromoisobutyric acid BIBB 2-Bromoisobutyryl bromide BIP-OH 2,6-Bis(1-methylbenzimidazolyl)-4hydroxypyridine BMA N-Butylmethylamine BSA Bovine serum albumin CA Cystamine CD Cyclodextrin CD/5-FC Cytosine deaminase/5-fluorocytosine **CEST** Chemical exchange saturation transfer CHO Cholesterol ε-Caprolactone CL CNC Cellulose nanocrystal **CPT** 10-Hydroxyl camptothecin CTComputed tomography 1D One-dimensional DEA Diethylamine DED N,N-Dimethylethylenediamine DET Diethylenetriamine Dipropylamine DPA **DTPA** Diethylenetriaminepentacetate acid EΑ Ethanolamine ED 1.2-Ethanediamine **EHDO** 5-Ethyl-5-(hydroxymethyl)-1,3-dioxan-2-oxo EP Epichlorohydrin **ESCC** Esophageal squamous cell carcinoma FA Folic acid FM Functional molecules **GSH** Glutathione II Iohexol intermediate LA α-Lipoic acid **LCPA** Linear cyclen-based polyamine **MEA** Methylethylamine

```
MRI
        Magnetic resonance imaging
        N-Methylpropylamine
MPA
NIR
        Near-infrared
NR
        Nanorod
QD
        Quantum dot
PA
        Propylamine
PAMAM Polyamidoamine
PAI
        Photoacoustic imaging
PBA
        Phenylboronic acid
PBI-OH
        N,N-Bis(2-[2-hydroxyethoxy]ethyl)perylene-
         3,4,9,10-tetra carboxylic acid bisimide
Pc
        Phthalocyanine
PDM
        Poly((2-dimethyl amino)ethyl methacrylate)
pDNA
        Plasmid DNA
PDT
        Photodynamic therapy
PEH
        Pentaethylenehexamine
PEG
        Polyethylene glycol
PEI
        Polyethylenimine
PER
        Pentaerythritol
PGEA
        EA-functionalized PGMA
PGED
        ED-functionalized PGMA
PGMA
        Poly(glycidyl methacrylate)
ы
        Phosphatidylinositol
POEAA
        Poly(ortho ester amino alcohol)
PP
        Piperazine
PPEGEEMA Poly(poly(ethylene glycol)ethyl ether methacry-
        late)
PTT
        Photothermal therapy
RE
        Rare-earth
SAR
        Structure-activity relationship
SHNP
        Starlike hollow silica nanoparticle
siRNA
        Short interfering RNA
t-Boc
        t-Butoxycarbonyl
TACN
        1,4,7-Triazacyclononane
TAE
        Tri(β-aminoethyl)amine)
TAPc-Zn Zinc(II) tetraaminophthalocyanine
TEP
        Tetraethylenepentamine
TET
        Triethylenetetramine
TGIC
        1,3,5-Triglycidyl isocyanurate
TMC
        Trimethylene carbonate
TMED
        N,N,N'-Trimethylethylenediamine
TPE-OH Hydroxyl-containing tetraphenylethene
TRE
        Tris(2-aminoethyl)amine
UCL
        Up-conversion luminescence
VE
        Vinethene
```

Download English Version:

https://daneshyari.com/en/article/7825886

Download Persian Version:

https://daneshyari.com/article/7825886

Daneshyari.com