

Contents lists available at ScienceDirect

Progress in Polymer Science

journal homepage: www.elsevier.com/locate/ppolysci

Silicon-containing block copolymers for lithographic applications

Ting-Ya Lo, Mohan Raj Krishnan, Kai-Yuan Lu, Rong-Ming Ho*

Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

ARTICLE INFO

Article history: Available online 16 October 2017

Keywords: Self-assembly Block copolymer lithography Thin films Silicon-containing block copolymers Nanopatterning

ABSTRACT

This comprehensive review, summarizes recent advances in the fabrication of well-ordered block copolymer (BCP) thin films by different methods, focusing on the development of silicon-containing BCPs as candidates for lithographic applications. With the advantage of Si-containing blocks, these BCPs offer much smaller feature sizes due to large segregation strength and high etch contrast for the fabrication of well-defined nanopatterns with high resolution. Considering that poly(dimethylsiloxane) (PDMS)-containing BCPs are widely studied systems among Si-containing BCPs, the possibility of using PDMS-containing BCPs for lithographic applications is demonstrated through previous and ongoing key research.

BCP lithography will lead to the development of next-generation microelectronic devices by providing a simple and scalable nanopatterning method for the fabrication of microelectronic devices in which the feature sizes and geometries are controlled by tuning the chain lengths and volume fractions of the block copolymers. The control of microdomain orientation and alignment in thin film BCPs is crucial for lithographic applications. The principles and limitations of various methods to orientation are discussed, including temperature-gradient, surface modifications, solvent annealing/evaporation and other new types of annealing process.

Directed self-assembly (DSA) of BCP on topographic or chemically patterned substrates has attracted a great attention from academic and industrial research since it offers the advantage of defect free nanopatterning at large scales. The key achievements in DSA methods are elaborated in the subsequent parts of this review. New trends for lithographic applications and the applications beyond lithography using Sicontaining BCPs for nanopatterning are also discussed, and finally, concluding remarks and perspectives for BCP lithography are presented.

© 2017 Elsevier B.V. All rights reserved.

Contents

1.	Introd	luction	20
2.	Patterning techniques using BCPs		
	2.1. Integration of top-down and bottom-up approaches		
	2.2.	Block copolymer (BCP) lithography.	22
	2.3.	Self-Assembly of BCP	23
		2.3.1. Phase behavior of BCPs in the bulk state	23
		2.3.2 Phase behavior of BCPs in the thin film state	24
3.	Controlling orientation of BCP thin film		
	3.1.	Temperature-gradient-induced orientation	28
	3.2 Surface-induced orientation		28
	3.3.	Solvent-induced orientation	
		3.3.1 Solvent-annealing-induced orientation.	
		3.3.2 Solvent-evaporation-induced orientation	30
	3.4.	Directed self-assembly of BCP orientation.	

* Corresponding author. *E-mail address:* rmho@mx.nthu.edu.tw (R.-M. Ho).

https://doi.org/10.1016/j.progpolymsci.2017.10.002 0079-6700/© 2017 Elsevier B.V. All rights reserved.

	3.	3.4.1. Topographic patterned surface (graphoepitaxy)	33
	3.	3.4.2. Chemical patterned surface (Heteroepitaxy)	34
4.	Silicon-co	containing BCPs for BCP lithography	36
	4.1. Ox	Oxidation mechanism of silicon-containing BCPs	36
	4.2. PC	POSS-containing BCPs	38
	4.3. PF	PFS-containing BCPs	41
	4.4. Hi	High χ silicon-containing BCPs	44
	4.5. Ot	Other silicon-containing BCPs	46
5.	PDMS-Co	Containing BCPs	46
	5.1. Ph	Phase behavior of PDMS-containing BCPs	47
	5.2. PE	PDMS-containing BCP thin films	50
	5.3. DS	DSA of PDMS-containing BCPs	56
	5.4. Lit	Lithographic applications and beyond	60
6.	Conclusio	sions and perspectives	64
	Acknowl	vledgement	65
	Referenc	nces	65

Nomenclature

AES	Auger electron spectroscopy.
AFL	Anti-symmetric surface-parallel lamella
AHY	Anti-symmetric hybrid structure
BCP	Block copolymer
С	Cylinders
CPS	Close-packed spheres.
CZA-SS	Cold zone annealing-soft-shear
DBP	Di-n-butyl phthalate
DDFT	Dynamic density functional theory
DEP	Diethyl phthalate
DOP	Bis(2-ethylhexyl) phthalate
DSA	Directed self-assembly
EUV	Extreme ultra-violet lithography
f	Volume fraction
FL	Symmetric surface-parallel full lamella
G	Gyroid
HL	Half-lamella
HY	Symmetric hybrid structure
ICs	Integrated circuits
ITRS	International technology roadmap for semiconduc-
	tors
L	Lamellae
L ₀	Domain spacing
MIRS	Multiple internal reflection infrared spectroscopies
Ν	Degree of polymerization
ODT	Order- disorder transition
OOT	Order-order transition
PE	Poly(ethylene)
PEDOT:F	SS (poly(3,4-ethylenedioxy thiophene):
	poly(styrenesulfonate)
PFS	Polyferrocenylsila
PI	Polyisoprene
PL	Perforated-layer
PL	Surface-perpendicular lamellae
PMOST-I	PTMSS Poly(4-methoxystyrene)-b-
	poly(trimethylstyrene)
POSS	Polyhedral oligomeric silsesquioxane
PS-PB-PS	S Polystyrene-b-polybutadiene-b-polystyrene
PS-PDSS	Polystyrene-b-poly(pentamethyl disilylstyrene)
PS-PEO	Polystyrene- <i>b</i> -poly(ethylene oxide)
PS-PFS	Polystyrene-b-poly(ferrocenylsilane)
PS-PLLA	Polystyrene-b-poly(L-lactide)

PS-PMN	IA Polystyrene-b-polymethyl methacrylaye
PS-PTM	SS Polystyrene- <i>b</i> -poly(trimethylstyrene)
PS-PVP	Polystyrene-b-polyvinylpyridine
PTFE	Poly(tetrafluoroethylene)
PVC	Poly(vinyl cyclohexane)
QPL	Quadratically perforated lamellae
Rg	Radius of gyration of copolymer film
S	Spheres
SAMs	Self-assembled monolayers
SCFT	Self-consistent field theory
t	Film thickness
TDGL	Time-dependent ginzburg-Landau theory
T _{odt}	Order-disorder transition temperature
XPS	X-ray photoelectron spectroscopy
ZA	Zone annealing
γ	Interfacial energy
3	Effective interaction parameter
λ	Average surface pattern size
ϕ	Polymer volume fraction for solutions
Φ_{P}	Shrinkage ratio of the film thickness during drying
χ	Flory-Huggins interaction parameter
$\Delta \gamma$	Interfacial energy difference
$\bigtriangledown T$	Temperature gradient

1. Introduction

Historically, the development of microelectronics has been following Moore's law (the linewidth of the pattern has approximately halved every 18 months) to satisfy the growing demands for higher speed and lower energy consumption per computing unit. When the feature size reduces below the sub-22 nm size, the "top-down" photolithography method will become prohibitively expensive, and approach its physical limit. Directed self-assembly (DSA) of block copolymers (BCPs) combining the advantage of traditional "top-down" lithography and thermodynamics-governed "bottom-up" self-assembly for spontaneously forming sub-22 nm nanostructures with high degrees of perfection, accuracy, registration and complexity is an appealing approach. There are some review articles on recent progress toward techniques that achieve controlled orientation of BCP thin films through DSA using chemical or topographical guiding patterns [1–5].

Block copolymers (BCPs) composed of two or more chemically distinct, incompatible blocks are well-known to self-assemble into various ordered nanostructures resulting from a balance between Download English Version:

https://daneshyari.com/en/article/7825917

Download Persian Version:

https://daneshyari.com/article/7825917

Daneshyari.com