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a b s t r a c t

The effects of defects and their distributions on the in-plane dynamic crushing of honeycomb panels

were studied using explicit finite element modeling. The influence of defect locations and ratios is

investigated on the deformation modes and the plateau stresses with respect to the impact velocity.

Numerical results show that the dynamic performance of honeycomb displays a high sensitivity on the

defect location, especially under low and moderate impact velocities. By introducing a defect correction

factor bm and using the one-dimensional shock wave theory, an empirical formula is given for the

variation of honeycomb’s plateau stress with respect to the impact velocity and the defect ratio.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Metallic honeycombs have been widely applied in the industry
due to their multi-functional performance and good design
ability. A large number of models have been established based
on the unit cell approach to predict the macro-mechanical
performance of perfect honeycombs [1,2]. Defects have not been
considered in most of these models, but are, for practical reasons,
difficult to avoid. Interest, thus, arises on the capability to
estimate the reduced capacities of honeycombs due to the
existence of defects for design purpose. This is particularly crucial
for applications in pivotal fields, such as the aerospace industry.

A number of studies about defected honeycombs can be seen in
open literacy. Silva and Gibson [3] studied the effects of non-periodic
microstructure and defects on compressive failure of Voronoi
honeycombs by using the finite element method. Guo and Gibson
[4] gave the Young’s moduli, the uniaxial or biaxial elastic buckling
and post-yielding behavior of regular hexagonal honeycomb with
defects. Fortes and Ashby [5] analyzed the non-uniform distribution
of the cell wall thickness. Simone and Gibson [6,7] discussed the cell
wall curvature and corrugation on the Young’s modulus and plastic
collapse strength of two-dimensional regular honeycombs. Chen et al.
[8] systematically studied the influence of six types of morphological
imperfection (waviness, non-uniform thickness of cell edges, cell-size
variations, fractured cell walls, cell-wall misalignments, and missing
cells) on the yielding strength of 2D cellular solids under biaxial

loading. Chung and Waas [9] analyzed the elastic imperfection
sensitivity of hexagonally packed circular cell honeycombs. Li et al.
[10] discussed the effect of irregular cell shapes and non-uniform cell
wall thickness on the elastic modulus of two-dimensional (2D)
cellular solids. Prakash et al. [11] and Chen et al. [12] studied the local
strengthening of honeycomb structures with inclusions. It is seen that
the relation between the defects and the static or quasi-static
responses of honeycombs has been basically established.

However, in the dynamic response of honeycombs where impact
loading is applied, the inertial effect causes variation in the
deformation mechanism, which is characterized by the progressive
collapse and localized deformation [13–19]. The influence of defects
on the dynamic performance of honeycombs differs from that in
static or quasi-station situations. Hönig and Stronge [20] studied the
location of the initial crushing bands and the wave propagation in
aluminum honeycombs with misaligned cell walls. Zheng et al. [21]
investigated the influences of the cell irregularity and the impact
velocity on the deformation modes and the plateau stresses. Zhu
et al. [22] analyzed the effect of cell irregularity on the high strain
compression of 2D Voronoi honeycombs with periodic boundary
conditions. Li et al. [23] discussed the effects of the irregular cell
shapes and non-uniform cell wall thickness. Wang and McDowell
[24] have discussed the effects of missing or fractured cell walls on
the in-plane effective Young’s modulus, shear modulus, and initial
yield strength of metal honeycombs. Nakamoto et al. [25] studied
the in-plane impact behavior of honeycomb structures randomly
filled with rigid inclusions. These results help to explain the
influence of the defect type and the defect ratio on the dynamic
responses of honeycombs. However, another parameter, the loca-
tion, or to some extent, the distribution of the defects, which also
plays an important role in determining the local dynamic stress
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evolutions, as evidenced by the work of Nakamoto et al. [26], has not
been fully studied.

This paper, aiming to clarify the influence of defects (in the
format of missing cell walls in this paper) locations, discusses
numerically the dynamic response and energy absorption of
honeycomb panels with defects under impact loads. A computa-
tional model is first introduced. It is followed by discussions on
the effect of the defect ratio and the location, and the impact
velocity on the plateau stress of the material. Empirical formulae
are provided to evaluate the plateau stress for design purpose.

2. Computational models

2.1. Finite element models

For perfect hexagonal honeycombs, three main deformation
modes (X-, V- or I-mode) may forms in the material which depend
on the impact velocity [27]. The locations where such modes are
formed are termed as PLBs (perfect local bands). Defects may exist at
such locations, or in the band, and one would expect that the effect
would yield in a change of the mode. To facilitate descriptions, we
divide a rectangular honeycomb panel into 9 equal sub-regions, as

shown in Fig. 1. For perfect honeycombs, the X-mode, when forms,
will be in the diagonal sub-regions 1, 5, 9, 3, and 7, and the V-mode in
sub-regions 1, 5, and 7. Defects are placed in different sub-domains
(in or out of PLB), respectively, to see their effects on the deformation
behavior of materials. Without losing generosity, the overall size of
the honeycomb panel in the present model is L1� L2¼

58.5 mm�70.2 mm, and each side is filled by 15 regular hexagons
in both the x and y directions, respectively. The cells are uniform with
an edge length l¼2.7 mm and a cell wall thickness t¼0.3 mm.

Explicit finite element analysis was conducted to simulate the
dynamic crushing behavior of honeycomb by using code LS-DYNA
[28]. Each edge of the cell was modeled with element type
Shell163, a 4-node quadrilateral shell element. Five integration
points along the cell wall thickness, as well as the full integrated
element formulation were adopted. These were found to be
sufficient to provide good accuracy. The matrix material is
aluminum and was modeled as elastic–perfectly plastic with
material parameters given as: the Young’s modulus E¼69 GPa,
the yielding stress sy¼76 MPa, Poisson’s ratio u¼0.3, and a density
r¼2700 kg/m3 [27]. Each surface of the cell was defined as a single
self-contact one. Self-contacts were also defined for the outside
faces of a cell for interactions with other cells during crushing. All
contacts were assumed to be frictionless. Crushing was assumed in
the y direction, and a plane strain state of the deformation is
assumed. All degrees of freedom at the bottom of the model were
fixed, with both the left and right sides of the panel kept free.

Defects were introduced in the form of missing cell walls. Due to
the symmetry of the specimen, only sub-domains 1–6 are modeled.
MATLAB was used to generate random numbers, which were used
to delete cell walls through a user defined pre-processing code
during mesh generation. Moreover, in order to eliminate the
influence of the cell-wall missing patterns, the same defects (given
in Fig. 2) are placed into different sub-domains, subsequently.

In Fig. 2, the local defect ratio j in a sub-domain is defined as

f¼
N

N=n
¼ nF, ð1Þ

where Nand N are the number of the missing cell walls in the sub-
domain and the total cell wall number of the honeycomb panel,
respectively, n¼9, is the number of the sub-domains, and F the
total defect ratio. Since a connected gap may be formed in the
sub-domain when the local cell wall missing ratio is more than
35% [1], the values for j varying from 0% to 35% is considered in
the present discussion.

2.2. The relative density

When cell walls are missing randomly, the relative density Dr
becomes a function of the local defect ratio, specified as

DrðjÞ ¼ r*ðjÞ
rs

¼
XN�N

i ¼ 1

liti=ðL1L2Þ, ð2Þ
Fig. 1. Model of the honeycomb panel and division of the sub-domains.

Fig. 2. Patterns (cell wall missing) of defect ratios: (a) j¼5%, (b) j¼15%, (c) j¼25%, and (d) j¼35%.
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