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A B S T R A C T

In the 1980’s, knotting in DNA became a fundamental research dimension in the study of the mechanisms by
which enzymes act on it. Later, the first compelling identification of knotting in proteins, in 2000, launched the
study of knotting in protein structures, and linear macromolecules more generally, following on theoretical
efforts of the 1960’s. The linking occurring in structures such as DNA, with the articulation of the relationship
between linking, twisting, and writhe, and, more directly, linking in Olympic gels has been of interest to ge-
ometers, molecular biologists, and polymer physicists since the 1960’s. More recently, a new mathematical
analysis of both global and local facets of knotting and linking is providing promising discoveries. Following a
discussion of the topological structures of knotting and linking, we will consider some of their applications, and
close with a consideration of new questions that suggest attractive directions for future research.

1. Introduction

In the 1960’s, Edwards [24] undertook a theoretical study of the
effects of knotting on the properties of polymer gels, but is was not until
1981 that Liu and David [39] demonstrated the presence of a knot in
DNA in the lab. This discovery launched an ongoing theoretical and
experimental research effort to understand the occurence and character
of these DNA knots and to employ them to discover the mechanisms
through which enzymes act on DNA in vivo [25, 36, 67, 75, 76]. Buck
[7] gives a very helpful introduction to this direction of research. It was
not until 2000 that Taylor [70] identified the first deep knots in protein
structures, thereby launching another thread in the application of to-
pology to biology. Assessing the presence of knotting and linking in
proteins has provided an ongoing stream of theoretical and experi-
mental research into the functional role such structures might play in
living organisms. The objective of this report is to describe key facets of
knotting and linking in polymeric systems and in protein structures. As
these are usually linear macromolecules, we describe one approach to
identifying knotting in such structures [51] as well as applications of
refinements of this method [32, 48, 66, 65, 68].

Historically, the first published consideration of knots appears to be
due to Vandermonde [62] but Gauss is recognized for initiating the
mathematical study of knots in his notes, Fig. 1. In the 1870’s [26], he
gave an integral, Eq. 1, that captures the integer linking between two
oriented rings. This integral can be employed to define a real number

quantifying the extent of linking between two oriented spatial arcs,
such as those in Fig. 1, or the self-linking of a single arc, for example the
open chains in models of proteins or of filamental systems that employ
periodic boundary conditions (PBC) such as polymer melts [5, 54, 56,
58, 63]. These enable one to define periodic linking and periodic self-
linking numbers that quantify the linking between pairs of filaments,
either open or closed, and, thereby, define the periodic linking matrix.
Here, we will describe an application to Olympic gels [4, 17, 31], see
Fig. 2, an application to the local linking in mathematical knots, and its
extension to proteins. Finally, we will also briefly discuss the analysis of
linking in proteins when cystene bridges are added to the structure.

In the next section we give an introduction to knots [1] and the
study of knots and slipknots in open polymers, such as proteins, by
employing the knotting fingerprint [30, 32, 66, 65, 68]. Next, we dis-
cuss the Gauss linking [26] and self-linking numbers, one-dimensional
periodic boundary condition models, the extension to periodic linking
and self-linking, and the definition of the periodic linking matrix whose
eigenvalues quantify the extent of entanglement in the systems to which
they are applied [56, 58]. These are applied to the analysis of Olympic
gels [4, 17, 31]. In another direction, the local linking number and
linking fingerprint is described and applied to classical knots, to illus-
trate its implications, and to proteins. In the third section, we will
briefly describe the application of linking to lassos and their extensions
occuring in proteins when cystene bridges enrich the structural ana-
lysis.
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2. Knots, slipknots, and knotting fingerprints

2.1. Mathematical knots

While, for thousands of years, humans have employed knotting and
entanglement of materials and, later, in their artistic representations, it
is not until the time of Gauss and, later, Kelvin that the mathematical
study of knots was systematically undertaken in the context of elec-
tromagnetism and as proposed models of atoms. Knots are closed rings
in space with two knots being equivalent if one can be deformed to the
other without breaks or singularities in the evolution. Although Gauss
provided a method to symbolically codify knots, i.e. the Gauss code, it
was the later purpose that gave rise to the first efforts by William
Thomson (Lord Kelvin) to classify knots and links by formulating a
study of indivisible, or prime, knots and links [71], see Fig. 3. The
mathematical study of knots developed steadily as a subfield of to-
pology with connections to geometry. The topology and geometry of
knots are the areas most relevant to the mathematical analysis of
polymer gels, DNA, proteins, and other macromolecules. Important
features of this knot theory, for our purposes, are the decomposition of
a knot into indecomposable subknots via the “connected sum,” as il-
lustrated in Fig. 3 where the two upper left knots are prime, a right
trefoil and a seven-crossing knot, while the upper right knot is the
composition of two three-crossing knots, a left and a right trefoil. Note
that, below them, is a two component link and a three component link,
the latter being known as the Borromean rings. The indecomposible, i.e.
prime, knots through sixteen crossings have been classified [29]: there
are 1, 701, 936, only the simpler ones are most often encountered. They
are currently identified using “knot polynomials” such as Alexander,
Jones, or HOMFLYPT or their convenient evaluations [2, 33, 37]. We

note that there are more powerful and more complex methods now
available.

2.2. Knots and slipknots in arcs

The fundamental challenge in defining the knot type associated to
an open arc in 3-space is to translate the question into the case of an
associated 3-space closed curve. One approach, see [23], is to define a
closure using points on a very large sphere containing the finite chain
and add segments from the two endpoints of the arc to the chosen point
on the sphere. This defines a knot type for almost all points, the ex-
ceptions being a set of measure zero on the sphere. The designation is
locally constant allowing to estimate the area of the regions on the
sphere associated to each knot type using, for example, the HOMFLYPT
polynomial. Since there are only finitely many possible types, one is
able to determine the proportion of the sphere associated to each knot
type, i.e. the knotting spectrum of the arc, and to associate the dom-
inate knot type to arc, Fig. 4. This provides a powerful method in that it
almost always successfully identifies a specific knot type, even for
random walks, [53]. One may modify this method to improve the
computational speed, for example see [72].

Empowered with the ability to determine the knot type of an open
arc, one is now in position to identify slipknots and their associated
ephemeral knots as follows: an unknotted segment in an arc containing
a knotted segment, the associated ephemeral knot, is called a slipknot,
Fig. 5. Mathematicians have proved that the probability that a random
arc or ring is knotted or contains a slipknot goes to one as the length of
the arc or ring goes to infinity, [18, 22, 48, 60, 69].

3. Gauss linking, periodic boundary condition (pbc) models,
periodic linking, and the periodic linking matrix

3.1. Gauss linking and self-linking

The linking number between two oriented chains, l1 and l2, is de-
fined using parameterizations of the chains, γ1(t) and γ2(s), via the
Gauss linking integral:

Fig. 1. One of Gauss' 1797 knot drawings [62].

Fig. 2. Olympic gels are collections of simply linked ring polymers [17].

Fig. 3. Knots and links from Kelvin's “On vortex montion” [71].

Fig. 4. Knotting in open arcs: one closure of an open arc and the distribution of
knot types [23].

K.C. Millett Reactive and Functional Polymers 131 (2018) 181–190

182



Download English Version:

https://daneshyari.com/en/article/7826048

Download Persian Version:

https://daneshyari.com/article/7826048

Daneshyari.com

https://daneshyari.com/en/article/7826048
https://daneshyari.com/article/7826048
https://daneshyari.com

