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A B S T R A C T

Our recent theoretical and/or Monte Carlo results for dilute solution properties of semiflexible ring polymers on
the basis of the wormlike ring model are briefly summarized. The behavior of the mean-square radius of gyration
〈S2〉, intrinsic viscosity [η], scattering function P(k) with k the magnitude of the scattering vector, and second
virial coefficient A2,Θ at the Θ state is examined as a function of the reduced contour length λL, where λ−1 and L
are the stiffness parameter and contour length of the wormlike ring, respectively. Effects of the topological
constraints on 〈S2〉, [η], P(k), and A2,Θ of semiflexible rings are also examined by comparing the results for the
wormlike rings without the topological constraints with those for the wormlike ring of the trivial or trefoil knot.

1. Introduction

Dilute solution properties of ring polymers have long been in-
vestigated mainly for flexible ring polymers, such as polystyrene (PS),
polydimethylsiloxane, and so on, using with the Gaussian ring theories
for analysis of experimental data [1, 2, 3]. The Gaussian ring theories
are valid only for ring polymers of very large molecular weight M
(strictly speaking, in the limit of M→∞), and then, can never be used
for semiflexible ring polymers, such as circular deoxyribonucleic acids
[4], cyclic amylose tris(alkylcarbamate)’s (cATACs) reported recently
by Terao et al. [5, 6], and so on. Theoretical and/or computational
studies on the basis of a proper model for semiflexible rings are then
desired.

As is well known, the dilute solution behavior of semiflexible linear
polymers may be well described by the Kratky–Porod wormlike chain
model [7, 8]. This model is defined as an elastic wire with bending
energy in a thermal bath or a continuous limit of the freely rotating
chain. Its chain stiffness is measured by the stiffness parameter λ−1,
which is equal to twice of the persistence length q (Note that, in gen-
eral, λ−1≥ 2q and the equality holds in the case of the wormlike chain)
[8]. The dimensional properties of the wormlike chain become func-
tions of the reduced contour length λL (∝ M), where L is the contour
length of the wormlike chain, the limits of λL → 0 and λL→∞ corre-
sponding to the rigid rod and random coil limits, respectively [8]. The
wormlike chain becomes longer and more flexible (or shorter and
stiffer) with increasing (or decreasing) λL. For analysis of the dilute
solution behavior of semiflexible ring polymers, a ring version of the
wormlike chain model, i.e., the wormlike ring model, then seems ap-
propriate.

The wormlike ring model may be constructed from the linear
wormlike chain (of contour length L and stiffness parameter λ−1) by
connecting its chain ends in such a way that the unit tangent vectors at
both the ends coincide with each other. In the limit of λL→ 0 and λL→
∞, the wormlike ring so constructed becomes the rigid ring of radius L/
2π and the random-coil (Gaussian) ring, respectively. Yamakawa and
coworkers have calculated the mean-square radius of gyration 〈S2〉 [8,
9, 10], intrinsic viscosity [η] [8, 9], and translational diffusion coeffi-
cient D [8, 9] for the wormlike ring model and proposed the inter-
polation formulas for these properties, although the application of the
interpolation formulas for [η] and D is limited to the range of large λL.
Unfortunately, however, the existing wormlike ring theory is valid only
for the phantom rings, i.e., the rings without the topological constraints,
which work to preserve the type of knots of a given ring polymer.

For a deeper understanding of the dilute solution behavior of
semiflexible rings, we have made theoretical and/or Monte Carlo (MC)
studies of the second virial coefficient A2,Θ at the Θ state [11, 12],
which reflects the topological interaction between a pair of unlinked
rings and then is positive even for ring polymers at the Θ state (without
excluded volume effects) [13–17], and scattering function P(k) with k
the magnitude of scattering vector k [18, 19] by the use of the wormlike
ring model. And also, we have examined effects of the topological
constraints on 〈S2〉 [11–19], [η] [20], P(k) [18, 19], and A2,Θ [11] by
comparing the MC results for the phantom wormlike ring with those for
the wormlike ring of the trivial or trefoil knot. In this review, these
results are briefly summarized.
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2. Monte Carlo model—Discrete wormlike ring

In this section, we give a brief description of a discrete version of the
wormlike ring model for MC simulations proposed by Frank-
Kamenetskii et al. [8, 10, 21]. The discrete wormlike ring is composed
of n junction points connected by n infinitely thin bonds of length l. Let
li (i=1, 2, ⋯, n− 1) be the ith bond vector from the ith point to the

(i+1)th. The nth bond vector ln completes the ring, i.e., ∑ =
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configuration of the ring may then be specified by the set {ln}= [l1, l2,
⋯, ln−1(, ln)] apart from its position and orientation in an external
Cartesian coordinate system. Note that ln is a dependent variable for the
ring. The configurational energy U of the ring may be written in terms
of the angle θi (i=2, 3,⋯, n) between li−1 and li and θ1 between ln and
l1 as follows,
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where α is the bending force constant. The stiffness parameter λ−1 of
the ring may be given by
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with kB the Boltzmann constant and T the absolute temperature. The
discrete wormlike ring so defined becomes identical with the con-
tinuous wormlike ring of contour length L and of stiffness parameter
λ−1 in the limit of n→∞ under the conditions of Eq. (2) with Eq. (3)
and of nl= L [10, 21]. Note that the discrete wormlike ring reduces to
the freely jointed ring in the limit of α→ 0. We adopt an n-sided regular
polygon of side length l as the initial configuration and sequentially
generate configurations without consideration of the topological con-
straints by the use of the Deutsch procedure [22], where a given con-
figuration is deformed by rotating the shorter part of the ring around
the vector connecting two junction points (not next to each other)
randomly chosen by an angle randomly chosen in [π, π), along with the
Metropolis method of importance sampling [23]. An ensemble so ob-
tained is a mixture of configurations of all kinds of knots with the
Boltzmann weight of U. This ensemble corresponds to the phantom
wormlike ring.

Following the procedure of Vologodskii et al. [24] and of ten Brinke
and Hadziioannou [25] to distinguish the trivial or trefoil knot from the
others by the use of the Alexander polynomials [26, 27], we extract
configurations of the trivial or trefoil knot from the mixture of config-
urations of all kinds of knots, and then, construct ensembles of con-
figurations only of the trivial or trefoil knot. We note that the procedure
on the basis of the Alexander polynomials cannot distinguish between
the trivial knot and, e.g., the Kinoshita–Terasaka knot having 11
crossings [28], and also, between the trefoil knot and, e.g., the 819 knot.
However, effects of such complex knots may be regarded as negligibly
small, if any, in the range of n and α/kBT (or λ−1) investigated.

By the use of the two or three kinds of ensembles, we calculated the
MC values of 〈S2〉, [η], P(k), and A2,Θ in the ranges of 10≤ n≤ 1000
and 0≤ α/kBT≤ 100. These ranges of n and α/kBT correspond to the
range of 0.05≲ λL≤ 1000. Hereafter, all lengths are measured in units
of λ−1 unless otherwise noted, for simplicity, so that, for example, λL is
replaced by (reduced) L.

3. Mean-Square radius of gyration

In this section, we show the behavior of 〈S2〉 as a function of L for
the phantom wormlike ring and the wormlike ring of the trivial or
trefoil knot.

Fig. 1 shows double-logarithmic plots of 〈S2〉/L against L for the
wormlike rings. The solid curve represents the theoretical values of the
(continuous) phantom wormlike ring calculated from the following
interpolation formula proposed by Shimada and Yamakawa [8, 10].
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The filled and unfilled circles represent the MC values for the
wormlike ring of the trivial knots and of the trefoil knot, respectively.
The square and diamond represent the values for the freely jointed ring
of the trefoil knot obtained by Dobay et al. [29] and by Moore et al.
[30], respectively. We note that Dobay et al. adopted the procedure for
extracting configurations of the trefoil knot on the basis of the HOMFLY
polynomials [26] and Moore et al. did the procedure proposed by De-
guchi and Tsurusaki [31, 32] using not only the Alexander polynomials
but also the Vassiliev invariants [33] of degree 2 and 3.

The theoretical values of the phantom wormlike ring (solid curve)
first increase along the dashed straight line segment of slope unity,
which represents the theoretical values of the rigid ring (〈S2〉= L2/
4π2), then deviate downward, and finally approach the random-coil
limiting value (〈S2〉= L/12 [1, 34, 35]) represented by the thin solid
horizontal line segment, with increasing L. The MC values for the
wormlike ring of the trivial knot (filled circles) almost agree with the
values for the phantom wormlike ring for L≲ 10 (Strictly speaking, the
MC data are somewhat scattered because of the discreteness of the MC
model) and become larger progressively than the latter values for L≳ 10
with increasing L. The MC data for the wormlike and freely jointed ring
of the trefoil knot (unfilled circles, square, and diamond) form a single
composite curve. The curve seems to first increase along the dot-dashed

Fig. 1. Double-logarithmic plots of 〈S2〉/L against L for the phantom wormlike
ring (solid curve), wormlike ring of the trivial knot (filled circles), and that of
the trefoil knot (unfilled circles). The solid horizontal line segment represents
the random-coil limiting value for the phantom ring. The dashed and dot-da-
shed straight line segments represent the theoretical values for the rigid ring of
radius L/2π and for the two rings of radius L/4π overlapping with each other,
respectively. The square and diamond represent the values for the freely jointed
ring of the trefoil knot obtained by Dobay et al. [29] and by Moore et al. [30],
respectively.

D. Ida Reactive and Functional Polymers 130 (2018) 111–117

112



Download English Version:

https://daneshyari.com/en/article/7826097

Download Persian Version:

https://daneshyari.com/article/7826097

Daneshyari.com

https://daneshyari.com/en/article/7826097
https://daneshyari.com/article/7826097
https://daneshyari.com

