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a b s t r a c t

Elementary one-dimensional wave theory is often used to describe the propagation of longitudinal

stress waves in polymer rods. More accurate solutions are available, but they are mathematically

difficult. A new wave equation is derived for long polymeric rods in this paper. The material properties

are modelled as a Maxwell viscoelastic material acting in parallel with an elastic material. Lateral

motions of the rod that result from the Poisson effect are accounted for using a new concept called the

‘‘effective density’’. The effects of both the material properties and the diameter of the bar on dispersion

and attenuation coefficients are highlighted. The new wave theory simplifies to the one-dimensional

solution for waves in polymer rods if the Poisson ratio is set to zero. The predictions simplify to Love’s

equation for stress waves in elastic bars when rate dependency is removed from the material model.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic testing of materials and components often
involves predicting the propagation of stress waves in slender
rods. For example, the Split Hopkinson Pressure Bar (SHPB) is a
well known apparatus for determining the mechanical properties
of materials under intermediate rate loading. The forces and
displacements at the two bar–specimen interfaces are determined
by strain measurements at locations along the bars. When testing
soft materials (foams, polymers) using a conventional SHPB set-
up with metallic bars, the majority of the incident pulse is
reflected back and only a small portion of the incident wave
passes through the specimen to the transmitter bar. This leads to
difficulties in sensing the transmitter signal with sufficient
accuracy. A greater problem is that the incident and the reflected
waves will be almost equal in magnitude. It then becomes
extremely difficult to verify equilibrium in the specimen. Gray
and Blumenthal [1] give a detailed account of the techniques
employed during SHPB testing of soft materials. Finite element
modelling of the whole Hopkinson bar system (including
the sample) is suggested in order to support the quantification
of the constitutive behaviour of materials. Polymer pressure bars
have been employed to overcome the difficulties associated with
SHPB testing of soft materials. The propagation of stress waves
along these bars using a linear viscoelastic rheological model is
the focus of this paper. The reader is referred to Ref. [1] for
descriptions of sample behaviour and to Ref. [2] for models that

incorporate nonlinear mechanical properties of polymers as a
function of temperature, strain and strain rate.

Since polymer bars are viscoelastic, the longitudinal stress
waves attenuate when propagating through the rod (see, e.g. [3]).
Both the attenuation coefficient and the phase velocity
of polymeric bars are frequency dependent and finding an
appropriate function to express this dependency is vital in
determining the displacements and stresses at the ends of the
bars. Some researchers have employed advanced processing
techniques [4] and intelligent computational algorithms [5] to
account for the attenuation and dispersion effects. Other studies
have concentrated on wave theories. Generally, wave propagation
has been analysed in the frequency domain. The analysis
often involves a complex Young’s modulus combined with, e.g.
one-dimensional wave equation (see, e.g. [3]). For greater
accuracy at higher frequencies, Zhao and Gary [6] generalised
the Pochhammer–Chree frequency equation for elastic bars to
viscoelastic bars, where the elastic constants were replaced by
complex properties. This work has subsequently been employed
in SHPB studies (e.g. Ref. [7]). However, Zhao and Gary [6]
adopted a mathematically complicated approach wherein a nine-
parameter rheological model accounted for both dispersion and
attenuation effects by generalising the Pochhammer–Chree
equation for elastic bars to viscoelastic bars, while assuming that
the Poisson ratio was constant. The level of complexity inherent
to the analysis in [6] may be the reason that few other groups
have attempted to repeat the work. The difficulties associated
with the technique are discussed in [8], where approximations to
the Pochhammer–Chree equation for viscoelastic bars are
employed to extend the usable frequency range beyond that
for the one-dimensional theory. The majority of studies on
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longitudinal stress waves in polymer rods retain the one-
dimensional wave theory for simplicity, e.g. see [9–12].

Time-domain analysis of wave propagation in polymer rods
has received less attention. However, the viscoelastic effect has
been incorporated in the one-dimensional wave equation [13],
which is valid within a certain frequency range. Experimentally,
this range can prove limiting. For elastic bars, the effect of lateral
inertia was predicted by Love [14] a century ago. Love defined the
kinetic and strain energy in an elastic rod and derived an equation
that incorporated the effect of lateral motion on axial waves using
the calculus of variations (see [14,15]). It is not possible to repeat
this analysis for a viscoelastic material as the necessary expres-
sions for strain energy are not derivable. An alternative derivation
is presented here. Due to the Poisson effect, there is kinetic energy
in lateral as well as axial motion. This kinetic energy is used to
define a new concept called the ‘‘effective density’’, which is
related to the density via a differential operator. Thereafter,
expressing Newton’s second law in terms of the ‘‘effective
density’’ results in a fifth order partial differential equation
(PDE), which represents longitudinal waves in a viscoelastic bar.
The new predictions highlight the effect of bar diameter on both
attenuation and dispersion coefficients of epoxy rods.

2. Derivation of the new wave equation

In the longitudinal (x direction) the strain, strain rate and
particle velocity associated with the displacement field u are

e¼ @u

@x
; ð1Þ

_e ¼ @e
@t
¼

@2u

@x @t
; ð2Þ

V ¼ _u ¼
@u

@t
; ð3Þ

respectively. Due to the Poisson ratio u, there are displacement
fields v and w in the y and z directions, respectively. For example,
the strain and the derivative of the displacement with time in the
y direction are

ey ¼�ue; ð4Þ

_v ¼�uy_e; ð5Þ

respectively. The kinetic energy of an infinitesimal length Dx of
the bar (Fig. 1) is

DTe ¼ ðV
2þu2k2 _e2

ÞrA
Dx

2
; ð6Þ

where r is density, A is cross-sectional area and k is radius of
gyration of the solid circular cross-section.

Zhang and Yu [16] analysed the dynamic compression of an
inertia-sensitive energy-absorbing structure. The structure
consisted of two plates that were pre-bent to a small angle and
then fastened together at the top and base. The plates were then
compressed axially by a falling rigid mass. The deformation of the
plates was assumed to consist of the rotation of four rigid bars
that were connected by plastic hinges. Lagrange’s equation of the

second kind was used to derive an equation of motion of the
system. The behaviour of the system is analogous to that of a
completely plastic in-line collision of two unequal masses, i.e. the
rigid falling mass and the ‘‘effective mass’’ of the two plates.
The effective mass of the plates consists of two terms. These two
terms represent the ‘‘longitudinal’’ and ‘‘transverse’’ inertia of
the actual specimen. Here, an ‘‘effective density’’ is used to
incorporate the effect of lateral inertia in a one-dimensional wave
equation. The mathematical rigour of the derivation of the
effective mass in [16] is not attempted. Rather, it is postulated
that the effect of lateral inertia effect can be incorporated in a
wave model using the concept of ‘‘effective density’’. The validity
of the approach is supported by comparison with two other wave
theories. It is then shown that the new wave equation is
equivalent to Love’s equation for stress waves in elastic bars
when rate dependency is removed from the material model.
Furthermore, the new equation simplifies to the one-dimensional
solution derived by Wang et al. [13] for waves in viscoelastic
polymer rods if the Poisson ratio is set to zero.

An effective density re is now introduced such that the kinetic
energy of the element Dx is DTea, where

DTea ¼ V2reA
Dx

2
: ð7Þ

Using Newton’s second law, the net longitudinal force acting
on the element Dx (Fig. 1) is

ADs¼ reA
@2u

@t2

 !
Dx: ð8Þ

As Dx-0, Eq. (8) can be written as

@s
@x
¼ re

@2u

@t2
: ð9Þ

To find the relationship between re and r, a functional TD is
defined as the kinetic energy error when using the effective
density re, i.e.

TD ¼

ZZ
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dx dt: ð10Þ

Substituting for strain rate (Eq. (2)) and particle velocity
(Eq. (3)) in Eq. (10), the minimisation of TD requires minimisation
of the following functional:
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The functional in Eq. (11) can be written in terms of
displacement u as
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The integrand in the functional I is
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According to Akhiezer [17], in order to minimise I in Eq. (12),
the integrand f in Eq. (13) should satisfy the following equation:
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In Eq. (14) uxt ¼ ð@
2u=@x @tÞ and ut ¼ ð@u=@tÞ. Therefore Eq. (14)

is identical to the following partial differential equation:
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Eq. (15) gives the relationship between effective density and
density that minimises the effective density error, TD, defined in

x

x
x

Fig. 1. Longitudinal forces on element of bar.

M. Aleyaasin, J.J. Harrigan / International Journal of Mechanical Sciences 52 (2010) 754–757 755



Download English Version:

https://daneshyari.com/en/article/782631

Download Persian Version:

https://daneshyari.com/article/782631

Daneshyari.com

https://daneshyari.com/en/article/782631
https://daneshyari.com/article/782631
https://daneshyari.com

