

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Facile one-pot preparation of 5-aryltetrazoles and 3-arylisoxazoles from aryl bromides

Eiji Kobayashi, Hideo Togo^{*}

Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

ARTICLE INFO

Article history:
Received 9 May 2018
Received in revised form
15 June 2018
Accepted 16 June 2018
Available online 20 June 2018

Keywords: 5-Aryltetrazole 3-Arylisoxazole Aryl bromide One-pot

ABSTRACT

The successive treatment of aryl bromides with n-BuLi, DMF, hydroxylamine hydrochloride, and finally diphenylphosphoryl azide provided efficiently the corresponding 5-aryltetrazoles in good to moderate yields. Similarly, the successive treatment of aryl bromides with n-BuLi, DMF, hydroxylamine hydrochloride, and finally diethyl acetylenedicarboxylate and Oxone® provided efficiently the corresponding diethyl 3-arylisoxazole-4,5-dicarboxylates in good to moderate yields. Aromatic aldoximes are the key intermediates in both reactions, and 5-aryltetrazoles and 3-arylisoxazoles could be obtained from aryl bromides in one pot under transition-metal-free conditions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nitrogen-containing heterocyclic compounds are very attractive due to their potent biological activities [1]. Tetrazoles [2a] and isoxazoles [3a], in particular, are one of the most important nitrogen-containing five-membered heterocyclic compounds and serve as units or cores of some pharmaceuticals and agrochemicals. For example, Losartan, a 5-(2'-biphenyl)tetrazole derivative, is an angiotensin II receptor blocker bearing antihypertensive activity [2b], and Valdecoxib, a 3-phenylisoxazole derivative, is a COX-2 inhibitor bearing anti-inflammatory activity [3d,3e], as shown in Fig. 1. Extensive synthetic studies of 5-substituted tetrazoles and 3-substituted isoxazoles have been carried out [2,3]. The conventional methods for the preparation of 5-aryltetrazoles and 3-arylisoxazoles include the reactions of aromatic nitriles with metal azides $[N_1 + N_3]^2$ and the reactions of aromatic nitrile oxides derived from aromatic aldoximes with alkynes [3], respectively.

As recent studies of the preparation of 5-aryltetrazoles, the reaction of aromatic nitriles and sodium azide in DMF [4a], the reaction of aromatic nitriles, sodium azide, and Amberlyst-15 in DMSO [4b], and other related reactions with aromatic nitriles [4c-4f] were reported. The Ugi reaction with aldehydes or ketones, amines, isonitriles, and TMSN₃ in CH₃OH was also reported

[5a–5d]. For the preparation of 5-substituted tetrazoles using transition metals, the reaction of aldehyde hydrazones with PhI(OAc)₂ (DIB), TMSN₃, and Cu(OAc)₂ [6a], the reaction of arylboronic acids with NaN₃ and Pd(II) complex [6b], the reaction of allyl carbonates with t-butyl isonitrile, TMSN₃, and Pd(OAc)₂ [6c], and the reaction of aldoximes with NaN₃ and InCl₃ [6d] were reported. For the construction of 5-substituted tetrazoles via [N₂ + N₂], the reaction of aromatic aldehydes, hydrazine, di-t-butylazodicarboxylate (DBAD), and [bis(trifluoroacetoxy)iodo] benzene (PIFA) [7a], the reaction of aryldiazonium salts, amidine, and l_2 ·KI [7b], and the reaction of aryldiazonium salts, 2,2,2-trifluorodiazomethane, and AcOAg [7c] were reported.

As recent studies of the preparation of 3-substituted isoxazoles, the reaction of benzylic chlorides with N-methylmorpholine N-oxide (NMO), NH₂OH·HCl, and then Oxone[®] in the presence of alkynes [8a], the reaction of α,α -difluoromethyl aldoxime with N-chlorosuccinimide (NCS) in the presence of alkynes [8b], the reaction of aldoximes and DIB in the presence of alkynes 8c], and other related reactions [8d—8k] under transition-metal-free conditions were reported. For the preparation of 3-substituted isoxazoles using transition metals, the reaction of terminal alkynes, primary amines, t-BuONO, ZnCl₂, and CuI [9a], the reaction of α -hydroxyimino acids with alkenes, Oxone[®], and Ru(bpy)₃Cl₂ under irradiation with blue LED [9b], and other related reactions [9c—9e] were reported.

Among the above mentioned reactions, the reaction of aromatic aldoximes with diphenylphosphoryl azide (DPPA) $\left[N_1+N_3\right]$ for the

Corresponding author E-mail address: togo@faculty.chiba-u.jp (H. Togo).

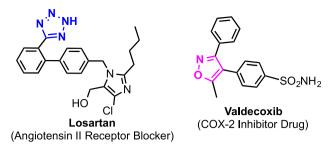


Fig. 1. Typical pharmaceuticals bearing 5-aryltetrazole or 3-arylisoxazole unit.

preparation of 5-aryltetrazoles [10] and the reaction of aromatic nitrile oxides derived from aromatic aldoximes with alkynes for the preparation of 3-arylisoxazoles are very attractive due to the simple operation and the ease of handling of the reagents. On the other hand, aryl bromides are either commercially available or can be easily obtained from the reactions of arenes with brominating reagents, such as Br₂, Br₂ with Fe, NBS, 1,3-dibromo-5,5-dimethylhydantoin (DBH), *etc.* In this report, we would like to present a one-pot and transition-metal-free preparation of 5-aryltetrazoles and 3-arylisoxazole-4,5-dicarboxylates through the reaction of aryl bromides with n-BuLi, DMF, and then NH₂OH·HCl, followed by the reactions with DPPA and Oxone $^{\text{\tiny ®}}$ in the presence of diethyl acetylenedicarboxylate, respectively.

2. Results and discussion

First, the one-pot preparation of 5-aryltetrazoles from aryl bromides via aromatic aldoximes was studied. The reaction of 4-methylphenyl bromide **1A** with n-BuLi (1.55 M in hexane, 1.2 equiv.) in THF at $-70\,^{\circ}$ C for 0.5 h, followed by the reaction with DMF (1.2 equiv.) at room temperature for 1 h and then the reaction with NH₂OH·HCl (1.5 equiv.) and Et₃N (1.5 equiv.) at room temperature for 2 h, gave the corresponding aldoxime **2A** in over 90% yield. Based on this result, the same successive treatment of 4-methylphenyl bromide **1A** with n-BuLi, DMF, and NH₂OH·HCl, followed by solvent evaporation and treatment of the residue with DPPA (2.0 equiv.) and DBU (4.0 equiv.) in toluene for 15 h at

refluxing conditions [10], was carried out to give 5-(4'-methylphenyl)tetrazole **3A** in 28% yield, as shown in Table 1 (entry 1). To improve the yield of 3A, K₂CO₃ (0.75 equiv. and 1.5 equiv.) instead of Et₃N was used in the 3rd step, the amount of DPPA (2.5 equiv. and 3.0 equiv.) was increased, and the amount of DBU was reduced in the 5th step under the same procedure and conditions except that the reaction temperature was -50 °C in the 1st step (entries 2–5). Consequently, it was found that the treatment of 4-methylphenyl bromide **1A** with *n*-BuLi (1.2 equiv.) at -50 °C for 0.5 h in the 1st step, DMF (1.2 equiv.) at room temperature for 1 h in the 2nd step, and NH₂OH·HCl (1.5 equiv.) and K₂CO₃ (1.5 equiv.) at room temperature for 2 h in the 3rd step, followed by solvent evaporation and final treatment of the residue with DPPA (2.5 equiv.) and DBU (3.5 equiv.) in toluene for 15 h under refluxing conditions gave 5-(4'-methylphenyl)tetrazole **3A** in 70% yield (entry 4). As a gramscale experiment, the treatment of 4-methylphenyl bromide 1A (6 mmol) with n-BuLi, DMF, NH2OH·HCl and K2CO3, solvent removal, and then treatment with DPPA and DBU under the same procedure and conditions gave 3A in 64% yield, as shown in Scheme

Based on those results, the treatment of 3-methylphenyl bromide 1B, 3,4-dimethylphenyl bromide 1C, 4-isopropylphenyl bromide 1D, phenyl bromide 1G, 4-biphenyl bromide 1H, and 4methoxyphenyl bromide 11 with n-BuLi, DMF, and then NH₂OH·HCl with K₂CO₃, followed by solvent evaporation and the reaction of the residue with DPPA and DBU in toluene under the same procedure and conditions, gave the corresponding 5arvltetrazoles 3B~3D and 3G~3I in good to moderate yields. respectively, as shown in Scheme 1. The same treatment of arvl bromides 1J and 1K bearing an O-methoxymethyl (O-MOM) group and aryl bromide 1L bearing a cyclic acetal group gave 5aryltetrazoles 31 and 3K, both of which were deprotected by extraction of the reaction mixture after acidification with aq. HCl, and 3L in good to moderate yields, respectively. As examples of aryl bromides bearing electron-withdrawing groups, such as chloro and trifluoromethyl groups, 4-chlorophenyl bromide 1M, 3chlorophenyl bromide **1N**, and 4-trifluoromethylphenyl bromide **10** were also treated with *n*-BuLi, DMF, and NH₂OH·HCl with K₂CO₃. Then, the solvent was evaporated and the reaction with DPPA and DBU under the same procedure and conditions was

Table 1Transformation of 4-methylphenyl bromide **1A** to 5-(4'-methylphenyl)tetrazole **3A**.

entry	Temp. (°C)	base	DPPA (equiv.)	DBU (equiv.)	Yield (%)
1 ^a	-70	Et ₃ N (1.5 equiv.)	2.0	4.0	28
2	-50	K_2CO_3 (0.75 equiv.)	2.5	3.5	67
3 ^b	-50	K_2CO_3 (0.75 equiv.)	2.5	3.5	46
4	-50	K_2CO_3 (1.5 equiv.)	2.5	3.5	70
5	-50	K_2CO_3 (1.5 equiv.)	3.0	3.5	59

The bold values represent the best conditions.

 $^{^{\}text{a}}\,$ The mixture was warmed at 0 $^{\circ}\text{C}$ for 5 min before addition of DMF at 2nd step reaction.

^b Reaction was carried out without evaporation, before addition of DPPA.

Download English Version:

https://daneshyari.com/en/article/7826695

Download Persian Version:

https://daneshyari.com/article/7826695

Daneshyari.com