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a b s t r a c t

Free vibration analysis of uniform isotropic Timoshenko beams with geometric nonlinearity is

investigated through a relatively simple finite element formulation, applicable to homogenous cubic

nonlinear temporal equation (homogenous Duffing equation). Geometric nonlinearity is considered

using von-Karman strain displacement relations. The finite element formulation begins with the

assumption of the simple harmonic motion and is subsequently corrected using the harmonic balance

method. Empirical formulas for the non-linear to linear radian frequency ratios, for the boundary

conditions considered, are presented using the least square fit from the solutions of the same obtained

for various central amplitude ratios. Numerical results using the empirical formulas compare very well

with the results available from the literature for the classical boundary conditions such as the hinged–

hinged, clamped–clamped and clamped–hinged beams. Numerical results for the beams with non-

classical boundary conditions such as the hinged-guided and clamped-guided, hitherto not studied, are

also presented.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Slender and short beams are widely used structural members
in aerospace structures. Accurate evaluation of the dynamic
characteristics such as frequencies and modeshapes of the
structures subjected to large amplitude vibration essentially
helps in better understanding the performance of the structure.

Large amplitude free vibration analysis of beams with
geometric non-linearity has been investigated by various re-
searchers [1–26] using either the analytical or the approximate
continuum and numerical methods since the classic work of
Woinowsky-Krieger [1].

Energy method involves in assuming suitable admissible
displacement functions for the lateral displacement, total rotation
and also axial displacement if included in the formulation. This
leads to two nonlinear temporal differential equations in terms of
the lateral displacement and total rotation if one excludes the
axial displacement in the formulation of large amplitude vibration
of Timoshenko beams and are difficult to solve to obtain the large
amplitude frequencies as a function of the amplitude and
slenderness ratios of the vibrating beam. Recent references
related to coupled displacement field method for Timoshenko
beams can be seen in the Refs. [22–25]. Researchers [22–25] used

the coupled displacement field method in which the one
displacement variable is coupled to the other using the static
equilibrium equation of the shear flexible beam so that complex-
ity of the problem gets reduced. If one includes the axial
displacement also in the formulation apart from lateral displace-
ment and total rotation, the complexity of the problem increases
and they are not easily amenable to solve the problem of large
amplitude vibration of Timoshenko beams using the energy
method. It also increases the complexity of the problem in
selecting a proper admissible function for the complicated
boundary conditions in which many displacement variables are
associated and it leads to coupled differential equations.

In the present study, the large amplitude free vibration analysis of
the uniform Timoshenko beams considering the effects of transverse
shear and rotary inertia is investigated with all possible boundary
conditions, where the ends of the beam constrained to move axially,
resulting in von-Karman type strain–displacement relation. A
comprehensive study is carried out for the hinged–hinged (H–H),
clamped–clamped (C–C), clamped–hinged (C–H), clamped–guided
(C–G) and hinged–guided (H–G) beams starting with the SHM
assumption. The final solution in terms of ratios of the nonlinear to
linear radian frequencies for several central amplitude ratios is
obtained by applying the harmonic balance method (HBM) [16] to
correct the error involved in the assumption of the SHM for the
above-mentioned boundary conditions. The guided boundary condi-
tion considered is of two types and are denoted by G1 and G2, where
G1 represents that the lateral displacement and the total rotation are

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

0020-7403/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmecsci.2010.07.009

� Corresponding author.

E-mail address: jagadishasl@gmail.com (J.B. Gunda).

International Journal of Mechanical Sciences 52 (2010) 1597–1604

www.elsevier.com/locate/ijmecsci
dx.doi.org/10.1016/j.ijmecsci.2010.07.009
mailto:jagadishasl@gmail.com
dx.doi.org/10.1016/j.ijmecsci.2010.07.009


not constrained and in G2, there is no constraint to lateral
displacement while the total rotation is constrained. It may be
emphasized that the matrices involved in the eigenvalue problem are
symmetric in the present FE formulation. Numerical results for the
classical boundary conditions H–H, C–C and C–H beams are available
in the literature and the present results compare very well with those
and at the same time the corresponding results for the non-classical
boundary conditions C–G1, C–G2, H–G1 and H–G2 beams are not
readily available and are presented perhaps for the first time. The
simplicity of the present FE formulation lies in getting the realistic
solution using the HBM [16] to correct for the assumption of the SHM
contrary to the procedures followed in Refs. [13,14].

2. Finite element formulation

Let the beam is divided into a number of uniform finite
elements of length l. The strain energy (U) of the element is
given by

U ¼
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where the non-linear strain–displacement relation of the beam
with the axially immovable ends (von-Karman type) are given by
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Note that Eq. (2) is valid for small strain but moderately large
rotation and transverse deflection (of the order of characteristic
dimension of the cross-section) of the beam [27,28].

Using Eqs. (1)–(2) the element nonlinear elastic stiffness
matrix [Ke]NL interms of generalized coordinate y, dy=dx, du=dx

and dw=dx in the symmetric form is
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The kinetic energy of the vibrating element including the effect of
rotary inertia, neglecting axial inertia followed by most of the

researchers, with the assumption of the SHM is given by

T ¼
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Cubic polynomial distributions are assumed over the beam
element for y, u and w in terms of the axial coordinate x as

y¼ a1þa2xþa3x2þa4x3 ð5Þ

u¼ a5þa6xþa7x2þa8x3 ð6Þ

w¼ a9þa10xþa11x2þa12x3 ð7Þ

It is to be noted that the assumption of lower order polynomials
for y and w in finite element (FE) formulation results in shear
locking effect [27] and also assuming a lower order polynomials
for u and w results in membrane locking phenomenon in beams
due to the nature of coupled displacement fields in the FE
procedure [27]. However, here in the present work cubic
polynomials are chosen for y, u and w.

The nonlinear elastic stiffness [Ke]NL and mass [Me] matrices
are obtained in terms of the nodal parameters y, dy=dx, u, du=dx,
w, dw=dx using the standard congruent transformations, where
the two transformation matrices [T1] and [T2] are given by
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¼ ½T1�½a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12�
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where the subscripts 1 and 2 in the nodal physical displacement
vector represent the nodes 1 and 2 of the beam element,
respectively.

After the assembly of the element matrices, the governing
matrix equation for the large amplitude free vibration phenom-
enon with the assumption of the SHM is

½K�NLfdg�lNL½M�fdg ¼ 0 ð10Þ

Nomenclature

a central amplitude of the vibrating beam
E Young’s modulus
G Shear modulus ðE=2ð1þnÞÞ
I area moment of inertia
k shear correction factor
½Ke� element stiffness matrix
½K� assembled stiffness matrix
l element length
L length of the beam
m mass per unit length
½Me� element mass matrix
½M� assembled mass matrix
r radius of gyration
u axial displacement
U strain energy
w lateral displacement
T kinetic energy

x axial coordinate
a1-a12 generalised co-ordinates
ex axial strain
l eigenvalue (frequency parameter¼mo2L4=EI)
cx curvature
o radian frequency
d eigenvector (mode shape of vibration)

Subscripts

L linear
NL nonlinear
H harmonic

Superscript

ðÞu differentiation with respect to x

½�T transpose of a matrix
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