Tetrahedron 74 (2018) 3557-3563

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Highly chemo- and enantioselective vinylogous aldol/cyclization cascade reaction to construct chiral 5,6-dihydropyran-2-ones

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China

ARTICLE INFO

Article history: Received 26 February 2018 Received in revised form 1 May 2018 Accepted 3 May 2018 Available online 22 May 2018

Keywords: Asymmetric catalysis Cascade reaction Dihydropyranone Vinylogous reaction Organocatalysis

ABSTRACT

An organocatalytic chemo- and enantioselective vinylogous aldol/cyclization cascade reaction between β , γ -unsaturated amides and β , γ -unsaturated α -keto esters was developed. With 5 mol% of chiral tertiary amine-thiourea catalyst **C3**, highly functionalized 5,6-dihydropyran-2-ones with a quaternary stereocenter were constructed in a straightforward manner with high yields (up to 99%) and excellent enantioselectivities (up to 98% ee).

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Chiral 5,6-dihydropyran-2-ones are ubiquitous structural motifs in numerous biologically active compounds (Fig. 1).^{1,2} For example, tarchonanthuslactone can lower the blood plasma glucose level in diabetic rats,^{2b} CI-1029 can inhibit HIV protease,^{2c} and Leptomycin B has been used as antifungal antibiotics.^{2g} Due to their pharmaceutical importance, great efforts have been devoted to the asymmetric syntheses of chiral 5,6-dihydropyran-2-ones.³ Among the developed methods, enantioselective catalytic hetero-Diels-Alder reactions^{4,5} and vinylogous aldol/cyclization cascade reactions^{6–11} are the most efficient to directly construct chiral 5,6dihydropyran-2-one skeletons. In those reports, the γ -nucleophiles for vinylogous aldol process include α,β -unsaturated carbonyl chloride, 6 α , β -unsaturated aldehydes, 7 olefinic azlactones,⁸ β , γ -unsaturated amides,⁹ α , β -unsaturated esters with HOBt¹⁰ and 3-alkylidene oxindoles.¹¹ On the other hand, the previously used aldol acceptors mainly focused on activated isatins, whereas acyclic ketones have been seldom used as vinylogous aldol partners to construct chiral 5,6-dihydropyran-2-ones.^{6,7a,7f,8b} Therefore, the development of new electrophiles for the vinylogous aldol/cyclization cascade reaction to construct novel chiral 5,6-dihydropyran-2-ones is still in demand.

 β , γ -Unsaturated α -keto esters are a unique class of compounds, which contain both a carbonyl group and an electron-deficient olefin motif.¹² They can act as aldol acceptors^{8b,13} as well as Michael acceptors¹⁴ in asymmetric catalysis. The highly chemoand enantioselectivity of these electrophiles is challenging. Very recently Xu and co-workers^{8b} reported an enantioselective vinylogous aldol reaction involving a cascade reaction between olefinic azlactones and β , γ -unsaturated α -keto esters to produce chiral dihydropyranones (Scheme 1a). In previous work,⁹ we have developed β_{γ} -unsaturated amides as γ -nucleophiles for the asymmetric vinylogous aldol/cyclization cascade reaction to form dihydropyranone-containing spiro compounds, and activated cyclic ketones such as isatins and o-quinones were used as the electrophiles. These β_{γ} -unsaturated amides can also react with electrondeficient olefins such as isatylidenes to undergo enantioselective vinylogous Michael/cyclization cascade reaction.¹⁵ With a continuing interest in the asymmetric vinylogous reaction with β , γ unsaturated amides as γ -nucleophiles, we envisioned that these γ nucleophiles could react with acyclic partners to construct new chiral 5,6-dihydropyran-2-one compounds by varying the substrates and chiral catalysts. Herein we report a highly chemo- and enantioselective direct vinylogous aldol/cyclization cascade reaction between β , γ -unsaturated amides and β , γ -unsaturated α -keto

^{*} Corresponding author. E-mail address: xinyanwu@ecust.edu.cn (X.-Y. Wu).

Fig. 1. Examples of biologically active molecules containing chiral 5,6-dihydropyran-2one skeleton.

(a) Previous work: olefinic azlactones as nucleophile

84-93% ee

(b) This work: β , γ -unsaturated amides as nucleophile

Scheme 1. Different approaches to construct chiral dihydropyranone.

esters (Scheme 1b), providing 5,6-dihydropyran-2-ones with a chiral quaternary center.

2. Results and discussion

Initially, a model reaction between β , γ -unsaturated amide **1a** and β , γ -unsaturated α -keto ester **2a** was carried out in dichloromethane at 25 °C to screen the chiral organocatalysts (Fig. 2), and the results are summarized in Table 1. As expected, all these bifunctional organocatalysts provided chiral 5,6-dihydropyran-2-one **3aa** with high enantioselectivities. The tertiary amine-squaramide catalysts **C5** and **C6** displayed lower enantioselectivity than the tertiary amine-thiourea catalysts screened (entries 5 and 6 vs entries 1–4 and 7–9). These results suggest that the H-bonding interaction between the catalyst and the substrate might play an important role in the stereocontrol. Meanwhile, the

Fig. 2. Structures of the chiral organocatalysts screened.

Table 1

Screening of the chiral organocatalysts for the vinylogous aldol/cyclization cascade reaction^a.

Entry	Catalyst	Yield (%) ^b	ee (%) ^c
1	C1	67	-97
2	C2	75	96
3	C3	80	96
4	C4	67	-96
5	C5	88	89
6	C6	65	92
7	C7	56	96
8	C8	71	96
9	С9	45	96

^a The reactions were performed with 0.02 mmol organocatalyst, 0.4 mmol β , γ -unsaturated amide **1a** and 0.2 mmol β , γ -unsaturated α -keto ester **2a** in 1 mL CH₂Cl₂ at 25 °C for 1 day.

^b Isolated yields after column chromatography.

^c Determined by chiral HPLC analysis.

chiral backbone of the organocatalysts has a dramatic impact on the chemical yields. Considering the overall chemical yield and the enantioselectivity, tertiary amine-thiourea **C3** was selected as the chiral catalyst for the optimization of reaction conditions (entry 3, 80% yield and 96% ee).

To improve the chemical yield of the cascade reaction, different solvents were surveyed with catalyst **C3** (Table 2, entries 1–9). To our delight, the isolated yields could be increased to 99% with 96%

Table 2

Optimization of reaction conditions ^a.

Entry	Solvent	C3 (mol%)	Time (d)	Yield (%) ^b	ee (%) ^c
1	toluene	10	1	99	96
2	paraxylene	10	1	87	95
3	CH_2Cl_2	10	2	80	96
4	Et ₂ O	10	1	99	96
5	THF	10	2	70	95
6	EtOAc	10	1	77	95
7	CH₃CN	10	2	75	95
8	CH₃OH	10	2	64	84
9	DMSO	10	2	26	75
10 ^d	toluene	10	1.25	99	96
11 ^e	toluene	10	0.5	99	95
12	toluene	5	1	99	95
13	toluene	2	2	91	96
14 ^f	toluene	5	1	91	96
15 ^g	toluene	5	1	99	96
16 ^{g, h}	toluene	5	3	66	95
17	Et ₂ O	5	1.5	96	94

^a Unless stated otherwise, the reactions were performed with organocatalyst **C3**, 0.4 mmol β , γ -unsaturated amide **1a** and 0.2 mmol β , γ -unsaturated α -keto ester **2a** in 1 mL solvent at 25 °C.

^b Isolated yields after column chromatography.

^c Determined by chiral HPLC analysis.

^d The reaction was performed at 0 °C.

^e The reaction was performed at 40 °C.

^f The reaction was performed in 2 mL toluene.

^g The reaction was performed in 0.67 mL toluene.

 $^{\rm h}\,$ The amount of $\beta,\gamma\text{-unsaturated}$ amide 1a was 0.2 mmol.

Download English Version:

https://daneshyari.com/en/article/7826834

Download Persian Version:

https://daneshyari.com/article/7826834

Daneshyari.com