

Contents lists available at ScienceDirect

### Tetrahedron

journal homepage: www.elsevier.com/locate/tet



## Improved total synthesis of $(\pm)$ -Tetragocarbone A

Eiji Nishimura, Yoko Yasuno, Tetsuro Shinada\*

Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi Osaka, 558-8585, Japan



#### ARTICLE INFO

Article history: Received 25 February 2018 Received in revised form 24 March 2018 Accepted 9 April 2018 Available online 12 April 2018

Keywords: Phloroglucinol Desymmetrization Hydroxyl-directing reaction Total synthesis

#### ABSTRACT

Stereoselective total synthesis of (±)-tetragocarbone A isolated from the propolis of an Australian stingless bee, Tetragonula carbonaria, has been developed by focusing on the latent symmetry of 1. The requisite 1R\*, 3R\*, 6S\* stereogenic centers were selectively installed by hydroxy group directing reactions including the late stage desymmetrization of the 1,3-diketone. The target natural product was successfully prepared in 12 steps from phloroglucinol on 300 mg.

© 2018 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Tetragocarbone A (1) was isolated from the propolis of an Australian stingless bee, *Tetragonula carbonaria*. Among several highly substituted cyclic polyketides that have been isolated, such as 2~5, 1 features a highly complex cyclohexanone skeleton with eight substituents and a cinnamic acid ester (Fig. 1).<sup>2,3</sup> The relative structure of 1 was proposed by NMR analysis and the first total synthesis of 1. The absolute stereochemistry of 1 was elucidated by X-ray structure analysis of the key synthetic intermediates and comparison of the chiral HPLC profiles of the synthetic and naturally occurring 1.1

The first total synthesis of 1 was achieved in 13 steps starting from phloroglucinol (**6**) in 1.9% overall yield (Scheme 1).<sup>1</sup> Although the first synthesis contributed to the structure elucidation, it suffered from low stereoselectivities in the following steps: (i) LiAlH<sub>4</sub> reduction of 7 (dr = 10.3), (ii) esterification of diol 8 to give a mixture of mono- and diesters, and (iii) dihydroxylation of 10 to give 11 (dr = 1:1). These results suggested that the above intermolecular reactions would not be suitable for the practical synthesis of 1.

#### 2. Results and discussion

In this paper, we would like to report a stereoselective total

Corresponding author. E-mail address: shinada@sci.osaka-cu.ac.jp (T. Shinada).

synthesis of  $(\pm)$ -1 focusing on the latent symmetry of the natural product (Scheme 2).<sup>4</sup> Tetragocarbone (1) was initially divided into the cinnamic acid and the cyclohexanone core 12 in a retrosynthetic manner. The molecular complexity of 12 was thought to be reduced to 13 and 14 possessing symmetrical elements. We set hydroxyl-directing reactions: the late stage desymmetrization of 13 and dihydroxylation of 15, for the introduction of the requisite stereocenters. Alcohol 15 would be elaborated by the stereoselective reduction of enone 16.

The synthesis commenced with the stereoselective synthesis of acetate 15. Alcohol 7 was prepared from phloroglucinol (6) according to the literature (Scheme 3).1 Alcohol 7 was smoothly reduced using NaBH4 in MeOH to give (1R\*,3S\*)-17 in a stereoselective manner. On the other hand, switching to LiAlH<sub>4</sub> afforded a 10:3 mixture of  $(1R^*,3R^*)$ -**8** and  $(1R^*,3S^*)$ -**17**. Reduction of acetate **16** with NaBH<sub>4</sub> in MeOH gave  $(1R^*,5S^*)$ -**15** as a single isomer. The stereochemistry of 15 was unambiguously determined by the total synthesis of 1 from 15.

Proposed reaction mechanism for the stereoselective reductions of 7 and 16 is depicted in Scheme 4. Senda et al. reported that reduction of ketone 18 with LiAlH<sub>4</sub> or NaBH<sub>4</sub> to give 19a in a stereoselective manner (eq. (1)).<sup>5,6</sup> The stereochemical outcomes were rationalized by the Cieplak effect in which the orbital interaction between the axial carbon-carbon bond and the carbonyl  $\pi$ -orbital plays an important role in the selective hydride approach. We assumed that the Cieplak effect would be adopted to the stereoselective reduction of 7 and 16 (eqs. (2) and (3), model A and B). On the other hand, reduction with LiAlH4 instead of NaBH4 afforded

**Fig. 1.** Structures of cyclic polyketides sharing a tetra-methylcyclohexanone skeleton. No names are given for **2**, **3**, and **5**.

Scheme 1. First total synthesis of 1 from phloroglucinol.

(1*R*\*,3*R*\*)-**8** as a major product from **7** (eq. (4)). The selectivity switching would be ascribed to the hydroxyl-directing model C in which the hydride is predominantly transferred in an intramolecular fashion.

With the key intermediate  $(1R^*,5S^*)$ -15 in hand, we next examined stereoselective transformation of 15 to the symmetrical triol 14 (Scheme 5). Dihydroxylation of 15 using a stoichiometric amount of  $OsO_4$  in pyridine was not fruitful to give a mixture of 14, 20, and the unexpected ketone 21. Although the stereochemistry of 21 could not be determined, these results implied that the intermolecular oxidation was not effective. These results led us to examine the hydroxyl-directing dihydroxylation reaction developed by Donohoe et al.  $^{8,9}$ 

Pleasingly, the stereoselectivity was significantly improved by treatment of **15** with  $OsO_4$  in the presence of TMEDA in  $CH_2Cl_2$  at low temperature to provide the desired triol **14** in 81% yield as a single isomer. In addition, the undesired formation of **21** was suppressed under the conditions.

Triol **14** was smoothly converted to the symmetrical 1,3-diketone **13** by AZADO-catalyzed oxidation reaction <sup>10,11</sup> (Scheme

Ph OAc 
$$(\pm)$$
-1  $(1R^*,3R^*,4S^*)$ -12 Desymmetrization by hydroxyl-directing reduction  $(1R^*,3R^*,4S^*)$ -12  $(1R^*,3R^*,4S^*)$ -14  $(1R^*,4R^*)$ -13  $(1R^*,4R^*)$ -13  $(1R^*,4R^*)$ -13  $(1R^*,4R^*)$ -15  $(\pm)$ -16

Scheme 2. Retrosynthetic analysis.

6). The stereoselective reduction of **13** was successfully achieved under the Saksena reduction condition <sup>12</sup> using NaBH(OAc)<sub>3</sub> in AcOH to give **12** as a sole product. It is conceivable that the tertiary hydroxy group participates to the directing effect to conduct the preferential intramolecular hydride transfer (model D). *trans*-Diol **12** was found to be labile and immediately employed for the next esterification reaction. Although diol **12** did not react with cinnamic acid under the conventional esterification condition using EDCI, DMAP, and Et<sub>3</sub>N, the esterification was significantly promoted by the Shiina's esterification. <sup>13,14</sup> Treatment of **12** with 2-methyl-6-nitrobenzoic anhydride (MNBA) in the presence of DMAP furnish ( $\pm$ )-tetragocarbone A (**1**) in 76% from **14** in 3 steps. Spectroscopic data of the synthetic **1** were identical with those of the authentic data. <sup>1</sup>

#### 3. Conclusion

We have developed an efficient stereoselective synthesis of 1

Scheme 3. Stereoselective reduction of 7 and 16.

## Download English Version:

# https://daneshyari.com/en/article/7827204

Download Persian Version:

https://daneshyari.com/article/7827204

<u>Daneshyari.com</u>