ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Rhodium-catalyzed reactions of 3-diazoindolin-2-imines with enamines and their extensions towards 5*H*-pyrazino[2,3-*b*]indoles

Guorong Sheng, Shicong Ma, Songlin Bai, Jing Qian, Kai Huang, Bo Lang, Ping Lu*, Yanguang Wang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China

ARTICLE INFO

Article history: Received 5 January 2018 Received in revised form 8 March 2018 Accepted 9 March 2018 Available online 10 March 2018

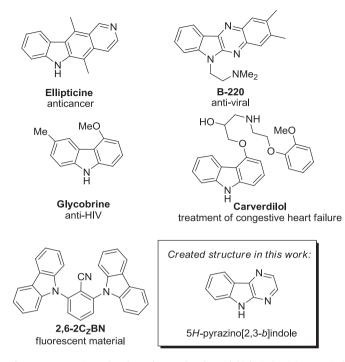
Keywords: Rhodium catalysis Metal carbenes Heterocycles 3-Diazoindolin-2-imines Diazo compounds

ABSTRACT

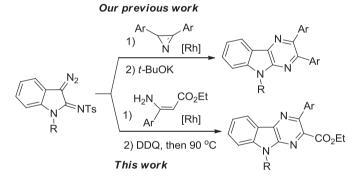
The rhodium-catalyzed reactions of 3-diazoindolin-2-imines with β -enamino esters furnished 2,3-diaminoindoles in excellent yields with wide functional group tolerance. The synthesized 2,3-diaminoindoles could be converted into 5*H*-pyrazino [2,3-*b*]indoles via a sequential dehydrogenation/ 6π -ERC/aromatization process.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction


Carbazoles and aza-carbazoles are important classes of heterocycles in medicinal chemistry and functional material science due to their wide range of biological activities¹ and optical properties.² For example, ellipticine, B-220, and glycobrinen are anticancer or anti-viral agents,³ carvedilol has been clinically used to treat congestive heart failure, and 2,6-2C₇BN is a thermally activated delayed fluorescence material (Fig. 1).⁴ Among of these heterocycles, 6H-indolo [2,3-b]quinoxalines are attracted much attention duo to their potential applications in medicinal chemistry and material science. The published methods for the construction of 5H-pyrazino [2,3-b]indole ring include the thermal cyclization of pyrazinylhydrazone followed by oxidative dehydrogenation.⁵ the condensation of the in situ generated 2,3-diaminoindole with α diketone,6 the condensation of indoline-2,3-dione with benzene-1,2-diamine.⁷ More recently, we reported a novel synthesis of 5Hpyrazino [2,3-b]indoles via rhodium-catalyzed reaction between 3diazoindolin-2-imines and 2H-azirines, followed by treatment with base (Scheme 1, Our Previous Work). The resulting 5H-pyrazino

[2,3-b]indoles present strong photoluminecence in solutions, in powders, and in films.⁸ Encouraged by these results and our successes on the development of new diazo reagents⁹ and their synthetic applications as metal carbene precursors for,⁸⁻¹⁰ we herein report another feasible access to 5*H*-pyrazino [2,3-*b*]indoles, which is triggered by a rhodium-catalyzed N–H insertion of 3-diazoindolin-2-imines with enamines (Scheme 1, This Work).


2. Results and discussion

^{*} Corresponding authors.

E-mail addresses: pinglu@zju.edu.cn (P. Lu), orgwyg@zju.edu.cn (Y. Wang).

Fig. 1. Representative carbazoles and aza-carbazoles with biological activity or optical property.

Scheme 1. Previous synthesis of 5*H*-pyrazino [2,3-*b*]indoles and this work.

When the reaction was performed using Rh₂(Oct)₄ (2 mol %) as catalyst in CHCl₃ 60 °C for 2 h, a N-H insertion product **3a** was obtained in 78% isolated yield (Table 1, entry 1). The structure of 3a was confirmed by its single crystal analysis. 12 The Z-form configuration of C=C bond in β-enamino ester group was formed due to the intramolecular hydrogen bonding. Delighted by this result, we then screened the reaction conditions, including solvent (e.g., dichloroethane and toluene) (Table 1, entries 2 and 3), catalyst (e.g., $Rh_2(OAc)_4$, Rh_2 (R-DOSP)₄, [(CF₃COO)₂Rh]₂, CuOTf·1/2C₆H₆, and Cu(OTf)₂) (Table 1, entries 4–9), reaction temperature (Table 1, entries 10 and 11), and reaction time (Table 1, entries 12 and 13). 1,2-Dichloroethane (DCE) was determined to be the optimal solvent, while Rh₂(Oct)₄ was the best rhodium catalyst (Table 1, entries 2, 4-6). The optimal reaction temperature and time were determined to be 60 °C and 2 h, respectively (Table 1, entries 2, 9-13).

We then investigated the substrate diversity using the optimal reaction conditions (Scheme 2). The substituent on N1-position of 3-diazoindolin-2-imine could be altered from methyl (1a) to ethyl (1b), isopropyl (1c), allyl (1d), and benzyl (1e). Thus, compounds

Table 1Screening of the reaction conditions.^a

Entry	Catalyst	Solvent	Temp (°C)	Time (h)	Yield (%) ^b
1	Rh ₂ (Oct) ₄	CHCl ₃	60	2	78
2	$Rh_2(Oct)_4$	DCE	60	2	91
3	$Rh_2(Oct)_4$	PhMe	60	2	86
4	$Rh_2(OAc)_4$	DCE	60	2	53
5	Rh_2 (R-DOSP) ₄	DCE	60	2	trace
6	$[(CF_3COO)_2Rh]_2$	DCE	60	2	trace
7	CuOTf•1/2C ₆ H ₆	DCE	60	2	43
8	$Cu(OTf)_2$	DCE	60	2	61
9	None	DCE	60	2	N.R
10	$Rh_2(Oct)_4$	DCE	40	2	84
11	$Rh_2(Oct)_4$	DCE	80	2	76
12	$Rh_2(Oct)_4$	DCE	60	1	80
13	Rh ₂ (Oct) ₄	DCE	60	3	82

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), catalyst (0.004 mmol), solvent (2 mL).

3a-e were prepared in yields ranging from 84% to 91%. In the case where **3d** was produced, the double bond of allyl did not participate in the reaction and survived after the reaction finished. The substituent on the 5-position of 3-diazoindolin-2-imine could be either electron-withdrawing (**3f**, 82% yield) or electron-donating group (**3g**, 84% yield). The sulfonyl group could either be other arenesulfonyl (products **3h-j**, 87–95% yields) or methanesulfonyl (product **3k**, 92% yield). Finally, we tested the scope of the β-enamino esters **2**. The substituent on the phenyl ring of (*Z*)-3-amino-3-arylacrylates **2** could be *p*-, *m*-, and *o*-methyl (**3l-n**), *p*-methoxy (product **3o**), and *p*-nitro (**3p**). In these cases, **3l-p** were prepared in excellent yields. Finally, 7-methyl-substituted 3-diazoindolin-2-imine and 2-methyl-substituted 3-amino-3-phenylacrylate were also examined and they provided the corresponding products **3q** and **3r** in 87% and 80% yields, respectively.

By treating the synthesized compounds **3** with DDQ in dichloromethane at room temperature for half hour, the corresponding oxidation products **4a-f** were obtained in quantitative yields (Scheme 3). Further treatment of **4a-f** in toluene at 90 °C for 36 h resulted in the cyclized products **5a-f** in 45%–78% yields. It was noticeable that the desulfonylation occurred in this transformation.

In order to understand the mechanism, a controlled reaction was conducted. When the cyclization was conducted in toluene at 80 °C for 6 h, compound **6** was isolated in 10% yield. Further heating **6** in toluene at 90 °C for 42 h, **5a** was obtained in 95% yield. Based on the above observations, we postulated a working mechanism for the formation of **3**, **4**, and **5** (Scheme 4). At the beginning, α -imino rhodium carbene **A** was formed by reaction between **1a** and rhodium catalyst. Next, the rhodium carbene reacted with enamine **2a** lead to N-H insertion Subsequently, 1,3-Rh migration and Rh-H exchange formed, **3a** as a sole product. When DDQ was added as the oxidant, dehydrogenation occurred and gave rise to a larger conjugated system, termed aza-triene **4a**, which was a good candidate for electron ring closure (6π -ERC). Thus, 4,5-dihydro-3*H*-pyrazino [2,3-*b*]indole **6** was obtained. Finally, aromatization occurred after the elimination of toluenesulfinic acid, leading to the

b Isolated yield.

Download English Version:

https://daneshyari.com/en/article/7827272

Download Persian Version:

https://daneshyari.com/article/7827272

<u>Daneshyari.com</u>