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a b s t r a c t

The paper aims to assess plastic limit loads of thick-walled hollow cylinders of strain-hardening

viscoplastic materials under internal pressure. Particularly, the problem concerned features in the

interaction between strengthening and weakening behavior during the deformation process. Therefore,

the relating onset of instability and the stability condition also deserve to be further investigated.

Analytical and finite-element limit analysis efforts are both made for complete and comparative

investigation. By the concept of sequential limit analysis, the plastic limit loads were acquired by

solving a sequence of limit analysis problems via computational optimization techniques. Applying the

velocity control as a computational strategy to simulate the action of pressure, the paper investigates

analytically and numerically the plastic limit load, the onset of instability and the stability condition of

plane-strain circular cylinders. Especially, analytical solutions of the onset of instability were solved

explicitly by the fixed point iteration. Validation of the present analytical and finite-element efforts was

made completely with good agreement between the analytical solutions and the numerical results.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Plastic limit load of cylinders is useful information requested
frequently for an optimal structural design. As it is well known,
limit analysis is a direct method to capture the asymptotic
behavior of an elastic–plastic material by the lower bound or the
upper bound theorem. Moreover, finite-element limit analysis
[e.g. 1–15] further enhance the accuracy of limit analysis and
broaden its applicability to more complex problems in engineer-
ing applications by taking advantage of techniques of finite-
element methods [16] and mathematical programming [17]. On
the other hand, if we consider structures made of strain-
hardening viscoplastic materials, it is appropriate to evaluate
the load-bearing capacity by limit analysis sequentially to
illustrate the interesting interaction between strengthening and
weakening behavior during the deformation process. By sequen-
tial limit analysis, it is to conduct a sequence of limit analysis
problems with updating local yield criteria in addition to the
configuration of the deforming structures. In each step and
therefore the whole deforming process, rigorous upper bound or
lower bound solutions are acquired sequentially to approach the
real limit solutions. Accordingly, efforts [18–30] have illustrated

extensively that sequential limit analysis is an accurate and
efficient tool for the large deformation analysis.

In this paper, we consider the limit analysis problem of a
plane-strain cylinder under internal pressure. The thick-walled
cylinder considered is made of strain-hardening viscoplastic
materials. Thus, it is not only a typical limit analysis problem
aimed to seek the plastic limit loads sequentially, but it is also an
interesting problem involving the interaction of strengthening
and weakening behavior reflecting the properties of the strain-
hardening and the strain-rate sensitivity during the deformation
process. The strengthening behavior is due to from the material
hardening properties. And the weakening phenomenon is corre-
sponding to the strain-rate sensitivity and the widening deforma-
tion of a pressurized cylinder. Thus, it also deserves to pay
attention to the onset of instability and the stability condition of
the plastic limit load. Note that, the onset of instability concerned
is about the plastic instability marked by the limit load maximum
while dealing with thick-walled cylinders [31,32]. Namely,
the strengthening due to material hardening is exceeded by the
weakening resulting from the strain-rate sensitivity and the
widening deformation. On the other hand, it is well known in
the elastic–plastic numerical analysis that the action of internal
pressure can be simulated either by using the stress (or load)
control or by using the velocity (or displacement) control.
Identified by the simulation method of the action of pressure
load, two different normalization conditions were adopted in
the computational procedures of finite-element limit analysis
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[20–30]. In the stress control approach, the normalization
condition is based on the simulation of the action of pressure
load by imposing a uniform stress (pressure) field [20–22,25,
29,30]. In the velocity control approach, the normalization
condition is obtained by simulating the action of pressure load
with a uniform velocity field [23–24,26–28]. Particularly, in the
finite-element limit analysis of circular hollow cylinders under
internal pressure [26–28], we adopted the velocity (or displace-
ment) control approach with the innermost edge expanded
uniformly at a constant speed in the radial direction. It is noted
that all the previous work [8,20–30] were conducted numerically
by using a combined smoothing and successive approximation
(CSSA) algorithm presented by Yang [33]. Particularly, the author
and his co-worker extended the CSSA algorithm [33] with rigorous
convergence analysis and validation to sequential limit analysis of
viscoplasticity problems [26], or/and involving materials with
nonlinear isotropic hardening [27–29].

The paper is aimed to analytically and numerically investigate
the interesting interaction of strengthening and weakening
behavior of pressurized cylinders made of strain-hardening
viscoplastic materials. By the concept of sequential limit analysis,
the plastic limit loads are acquired by solving a sequence of limit
analysis problems via computational optimization techniques
based on the CSSA algorithm [33]. Meanwhile, the velocity control
is employed as a computational strategy to simulate the action of
pressure. The resulting onset of instability and the stability
condition corresponding to the velocity control are firstly
investigated analytically in the paper to fully reveal the strength-

ening and weakening interaction. It is also noted that the Norton-
Hoff viscoplastic model is utilized in the previous work [26,28] to
consider the strain-rate sensitivity as utilized in regularized limit
analysis [34]. On the other hand, the current work involving the
strain-rate sensitivity is based on the rigid-plastic model with the
updating yield strength step-wisely.

2. Problem formulation

We consider a plane-strain viscoplastic problem of the von
Mises-type material with nonlinear isotropic hardening. It is
noted that such problems feature in involving hardening material
properties and weakening behavior corresponding to the strain-
rate sensitivity in addition to widening deformation. The purpose
is to seek the plastic limit load of a pressurized thick-walled
hollow cylinder. Naturally, the problem statement leads to
the lower bound formulation. By employing duality theorems
[e.g. 8,13], we can establish the corresponding upper bound
formulation from the lower bound formulation and further
theoretically equates the greatest lower bound to the least upper
bound. Therefore, we can approach the real limit solution by
maximizing the lower bound or by minimizing the upper bound.

2.1. Problem statement (lower bound formulation)

We consider a general plane-strain problem with the domain D

consisting of the static boundary qDs and the kinematic boundary
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Nomenclature

a0 initial interior radius
a current interior radius
_a current velocity of the interior radius
b0 initial exterior radius
b current exterior radius
{C} coefficient matrix relating to the incompressibility

constraint
D problem domain
qDs static boundary
qDk kinematic boundary
EU convergence tolerance
G a constant relating to the velocity control
h hardening exponent
[K] assembled stiffness matrix
[Ke1] element stiffness matrix
[Ke2] element stiffness matrix
m strain-rate sensitivity
n
*

unit outward normal vector of a boundary
Ne number of elements used to discretize the domain
p({U}) discretized inner product of the incompressibility

constraint
Pi internal pressure
q load factor
q(s) lower bound functional
q̄ðu
*
Þ upper bound functional

qn exact limit load
q̃ðfUgÞ finite-element discretized upper bound functional
q̃ðfUn

gjÞ finite-element discretized upper bound functional
calculated in the ith iteration

R yield strength ratio
S length of the innermost edge
t
*

scalable distribution of a traction vector

t transposition superscript
Dt step size
Dti step size in the ith iteration
{U} nodal-point velocity vector
{U}0 arbitrarily starting value of nodal-point velocity

vector
{U}j+1 unknown nodal-point velocity vector in the (i+1)th

iteration
fUn
gj nodal-point velocity vector calculated in the ith

iteration
u
*

velocity field
u
*

s velocity field prescribed at the static boundary
J � J2 Euclidean norm
JsJ3 von Mises primal norm on stress tensor
jj_�jj�_ von Mises dual norm on strain-rate tensor
s stress tensor
sr stress component in the radial direction
sY yield strength
(sY)j+1

n yield strength updated in the (i+1)th iteration of the
nth step

s0 initial yield strength
sN saturation value of yield strength
s̄ equivalent stress
�̄ equivalent strain
�̄1 equivalent strain for the first step
�̄n equivalent strain for the nth step
_� strain-rate tensor
_̄� equivalent strain rate
_̄�0 reference strain rate
_̄�

n

jþ1 equivalent strain rate updated in the (i+1)th iteration
of the nth step

d small real number
r vector differential operator
b penalty parameter
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