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a b s t r a c t

The applicability and the limitations of the effective medium assumption for the dynamics of cellular

beams are studied. Beams made of uniform triangular and regular hexagonal cells are analysed. The

natural frequencies and modal distributions as calculated using the detailed finite element model of the

cellular networks are compared with those predicted based on equivalent homogeneous media of the

same overall size and shape. It is observed that, for low mode number, a cellular beam behaves as a

continuum, provided the cell size is significantly smaller than the external dimensions of the beam. Due

to different deformation mechanisms, triangular cells show frequencies independent of area fraction

whereas hexagonal cells show this dependence clearly. As the wavelength starts to become of the order

of the heterogeneity, the continuum behaviour begins to break down. With the increase in mode

number, cellular beams exhibit inherent flexibility with a progressive increase in their modal densities

as compared to those of a homogeneous continuum. The modal density increases further when the cell

walls start to resonate. During resonance, an abrupt rise in the modal density is observed for the

triangular cells as the cell walls start deforming in the flexural mode instead of the axial mode. In

contrast, for hexagonal cells, the predominant mode of cell wall deformation is always flexural.

Crown Copyright & 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Natural and synthetic cellular materials such as wood, cork,
bone, polymeric, ceramic and metallic foams have inspired many
theoretical, experimental and computational works relating
structure to properties. Due to their high stiffness to weight ratio,
they are increasingly being used for various industrial applica-
tions. Honeycombs and foams are used as core of sandwich
structures in aerospace and marine industry. Industrial applica-
tions include packaging, thermal insulation, acoustic damping,
biomedical scaffolds, etc.

At the mesoscopic scale, i.e. at the length scale of a typical cell,
cellular materials are made of complex network of elastic beams
or plates. When the overall size of a piece of cellular material is
much larger than the length scale of a typical cell, the structure
can be treated as homogeneous with some effective properties.
The literature shows that the research on cellular structures is
primarily devoted in calculating its effective properties, given the
geometry, topology, and material properties of the cell wall
material.

A generic approach used to analyse periodic cellular structures
is to identify a suitable unit cell as a representative of the whole,
and then analyse the mechanics of the unit cell for predicting the
macroscopic behaviour. A few analytical works are available so far
using this sort of unit cell approach [1–3]. For example, Gibson
et al. [1] determined the in-plane elastic constants for infinite
lattice made of hexagonal cells. In their unit cell approach, they
considered only the bending deformation of the cell walls. Warren
and Kraynik [2] used kinematic arguments to analyse the
deformations of the cell walls connected at a node. They included
both the axial and the bending deformations of the cell walls and
evaluated the elastic constants for hexagonal honeycombs for all
densities. Gulati [3] derived the expressions for Young’s modulus
for honeycombs made of triangular cells using strain energy based
method.

In case of the numerical approach, the unit cell is modelled as a
network of interconnected beams. The bulk behaviour is predicted
by analysing the unit cell using the finite element method [4–9].
For instance, Scarpa et al. [4] used experimental techniques as
well as the finite element method to analyse the in-plane elastic
behaviour of honeycombs made of inverted hexagons due to uni-
axial loading. Silva et al. [5] and Zhu et al. [6] studied the effect of
the microstructural variability on the elastic behaviour of two-
dimensional cellular solids using the finite element method.
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Because of the advantage of modelling the intricate geometrical
features of the microstructure, finite element method has been
used for modelling various defects. For example, Silva et al. [7]
analysed the effect of the local defects (e.g. removal of the cell
walls) in an irregular topology on the bulk compressive failure
behaviour. Grenestedt [8] studied the effect of the wavy nature of
the cell walls. Simone and Gibson [9] analysed the dependence of
the elastic properties on the thickness variations of the cell walls.
Chen et al. [10] studied how these imperfections can affect the
yielding of a two-dimensional foam.

Homogenisation theory has been used for calculating the
bounds on the bulk properties of the cellular materials. Torquato
et al. [11] derived bounds on the effective properties based on
the Hashin–Shtrikman bounds and compared their results with
the finite element predictions. An extensive discussions on the
mechanical behaviour of cellular materials such as elastic, plastic,
buckling, failure, thermal conductivity, etc. can be found in the
work of Gibson and Ashby [12]. Christensen’s review [13]
describes the relationships between the elastic properties, cellular
topology and the effective density for two- and three-dimensional
materials. Mechanical behaviour of metallic foams can be found in
Gibson’s work [14]. Grenestedt [15] analysed various models for
studying the mechanics of perfect cellular materials.

The literature shows that most of the research on cellular
materials is devoted to the study of elastic and plastic behaviour
under static loads, whereas very few works are available on the
dynamics of such materials. Wang and Stronge [16] used a
micropolar theory to analyse the behaviour of hexagonal
honeycombs under periodic forces. Baker et al. [17] studied the
effect of impact and energy absorption behaviour of cellular
materials.

The present authors [18,19] developed a numerical scheme for
reducing the computational expense associated with the free
vibration and the response calculations of the cellular structures.
As opposed to this, here we investigate the applicability and the
limitations of the effective medium theory for dynamics of
cellular structures. The effective properties based on the statics
of infinite lattices are expected to predict the long wave behaviour
well. However, it is not clear (1) what happens if a structure is not
of infinite extent, because such structure is not strictly periodic,
(2) how the dynamic behaviour changes with the increase in the
mode number. The first question, in fact, raises the issue of the
size of the specimen relative to the cell. In statics, researchers
have observed softening effect during compression and stiffening
effect in shear when the foam specimen size is not sufficiently
large in comparison to the cell size [20,21]. It is not clear how
these effects translate in case of dynamics and what their
dependence on mode number is.

Cellular structures are modelled here using the finite element
method. This allows modelling of all the geometric features of the
structure in detail. In addition, this micromechanics-based
approach does not impose any restriction on the size of the
model or the nature of the boundary conditions. Periodic
boundary conditions are not required in this case as the whole
structure itself is analysed. The results from the numerical
experiments are chosen as the benchmark for comparisons with
the predictions based on the equivalent medium theory. Trends
observed are explained using physical reasoning qualitatively and
quantitatively.

The paper is organised as follows. An effective medium theory
for the dynamics of cellular beams is presented in Section 2,
followed by the results and discussions for the low frequency
vibration of cellular beams in Section 3. Progressive deviation in
the continuum behaviour with increase in mode number and the
statistics of modal distribution are described in Section 4. Finally,
the concluding remarks are made in Section 5.

2. Dynamics of cellular beams as described by effective medium

2.1. Finite element modelling of an elastic network

Free vibration of structures made of uniform triangular and
regular hexagonal cells are analysed first. These cell topologies
represent two extreme cases: the node connectivity of the cell
walls is three for hexagonal cells and six for triangular cells. The
dominant strain energy mechanism for the cell walls in a
triangular topology is axial stretching, whereas for hexagonal
cells bending of the cell walls dominates. Such lattices are
isotropic in the plane. Our choice was also guided by the fact
that the analytical expressions of the elastic constants for lattices
made up of such cells are available in the literature.

Cell walls are modelled as two node or three node Euler–Ber-
noulli beams having three degrees-of-freedom at each node. The
width normal to the plane of the structure is taken as unity.
The degrees-of-freedom transverse to a cell wall along with the
rotation at the end nodes account for the beam bending energy of
the cell walls. The degrees-of-freedom in the direction of the line
joining the end nodes of a cell wall account for the stretching
energy. Hence, the displacements in the horizontal and the
vertical directions along with the rotation of all the nodes
approximately describe the deformed configuration of the whole
structure. Within each beam element, cubic interpolation is used
for the transverse displacements, whereas linear interpolation is
used for the axial displacements. The details of interpolation and
development of the global discretised equations are omitted here
for brevity and can be found in standard textbooks on the finite
element method (see, e.g. [22]). The essence of the procedure is
described in the next paragraph. The shear effects in the cell walls
have been ignored due to thinness and because the deformed
shape of each cell wall does not show rapid fluctuations for low
frequency dynamics. It is assumed that all the cell walls are of
uniform thickness with zero damping. Displacements are as-
sumed to be small so that a linear analysis is valid. The rotary
inertia of the cell walls is neglected.

The overall strain energy V and the kinetic energy T can be
expressed in terms of the generalised co-ordinates of the structure
as

V ¼
1

2
qT Kq; T ¼

1

2
_qT M _q, (1)

where q is the vector of the generalised co-ordinates, K and M are
the global stiffness matrix and global inertia matrix, respectively,
of size N � N for a structure having N degrees-of-freedom. For a
conservative system, the Lagrangian L takes the form L ¼ T � V .
Applying Hamilton’s principle d

R t2

t1
L dt ¼ 0 for a conservative

system between the time interval t1 and t2, (d means ‘variation
of’), we obtain the set of equations of motion for the undamped
free vibration of cellular structure

M €qþ Kq ¼ 0. (2)

For synchronous free vibration, Eq. (2) leads to the well known
algebraic eigenvalue problem

Kur ¼ lrMur , (3)

where lr is the r-th eigenvalue and, ur is the corresponding
eigenvector. The square root of the eigenvalue lr is the r-th
natural frequency or of the overall structure. Eigenvectors are the
mode shapes of the structure.

Structures made of cells possess geometrical features at two
scales of length (see, Fig. 1). First, the length scale of the overall
structure, say L, is typically represented by the characteristic
length of a hypothetical solid when the porosity is completely
filled. There is another length scale intrinsic to the microstructure,
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