
Shear deformation of voids with contact modelled by internal pressure

Viggo Tvergaard

Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Building 404, DK-2800 Kgs. Lyngby, Denmark

a r t i c l e i n f o

Article history:

Received 5 March 2008

Received in revised form

14 August 2008

Accepted 29 August 2008
Available online 16 September 2008

Keywords:

Voids

Plasticity

Large strains

Shear deformation

Contact

a b s t r a c t

The behaviour of voids in a ductile material subject to simple shear or to a shear-dominated stress state

is analyzed numerically. Here the stress triaxiality is so low that instead of void volume growth to

coalescence there is void closure leading to micro-cracks that rotate in the shear field. At some stage of

the deformation, the void surfaces will come in contact so that sliding with or without friction will start

to occur. To avoid problems with strong mesh distortion in the large strain field around the deforming

void and with mesh resolution at the tip of the crack, an internal pressure is applied as an approximate

representation of void surfaces pressed together in frictionless sliding, and also remeshing is applied.

This micromechanical model for a strain hardening elastic–plastic material shows that a maximum

overall shear stress is reached, at which localization of plastic flow occurs, leading to final failure in the

material.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Ductile fracture in metals occurs mainly by the growth of
microscopic voids until they coalesce with neighbouring voids to
initiate the formation of macroscopic cracks. When the voids grow
under high stress triaxiality, as is often the case in ductile fracture
situations, they remain near spherical and in such cases the
ductile fracture process is rather well described by porous ductile
material models as that proposed by Gurson [1]. Many numerical
cell-model studies or experimental studies for this type of
behaviour leading to ductile fracture have been carried out [2,3].
When the stress triaxiality is lower the voids will tend to elongate
in the tensile direction and will deviate more and more from the
circular cross-section the lower the stress triaxiality. A porous
ductile material model accounting for such ellipsoidal cavities has
been developed by Gologanu et al. [4]. However, when there is no
hydrostatic tension in the material no void growth is predicted at
all, but still ductile failure is observed in situations of pure shear.
Recently, Nahshon and Hutchinson [5] have proposed an exten-
sion of the Gurson model to also describe failure in pure shear, but
here the damage parameter f is no longer a geometrically well-
defined void volume fraction, so that the model is more like
continuum damage mechanics.

The behaviour of voids under shear has been investigated by a
number of authors. Thus, for an initially spherical void in a
linearly viscous material under remote shearing, Fleck and
Hutchinson [6] have found that the void becomes spheroidal,

rotates, and finally forms a penny-shaped crack. Fleck et al. [7]
have analyzed an elastic–plastic shear specimen containing a
row of circular cylindrical voids, to model experiments of Cowie
et al. [8], in which the shear loading was combined with tension
or compression and failure tended to occur by shear localization
and void-sheet fracture in the direction parallel to the shear
loading. Some of these finite strain analyses for perfect plasticity
account for contact with an inclusion inside the void, from
which the void has originally nucleated. More recently, Barsoum
and Faleskog [9] have carried out full three-dimensional (3D)
analyses for similar shear specimens containing spherical voids
in order to model their experiments [10] on ductile fracture
in a double-notched tube specimen loaded in combined tension
and torsion. The behaviour of initially spheroidal voids in a shear
field have been analyzed by Scheyvaerts et al. [11] for different
initial orientations of the spheroid, relative to the direction of
shear, and 3D analyses for voids in shear fields have also been
carried out by Leblond and Mottet [12]. Relevant to these studies
of voids in a shear field are also analyses of Anderson et al. [13],
considering the effect of a row of micro-cracks in a material
subject to shear, where it is shown that localization can result
from crack rotation and stretching, even when strain hardening
occurs.

Several experimental and theoretical investigations have
considered voids in tensile test specimens, where final void-sheet
failure involves significant shearing as the voids grow to
coalescence in a shear band inclined to the tensile direction
[14–18]. Characteristic of these studies is that besides shear the
voids are subjected to sufficiently high stress triaxiality, so that
the void volumes grow during shearing.
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The purpose of the present study is to find a micromechani-
cally based mechanism of ductile failure in shear under low stress
triaxiality, which can rely on void deformations but cannot rely on
a growing void volume fraction, since the voids close up. The
plane strain shear specimen of Fleck et al. [7] is reconsidered, but
the analyses are carried much further. Now strain hardening is
accounted for and the focus is on studying situations where the
void closes up to form a crack or something like a crack, which
then rotates and stretches in a way somewhat analogous to the
cracks analyzed by Anderson et al. [13]. In a full finite strain
analysis of void deformations, the formation of a completely
closed crack with crack surface contact and with much material
flow around the crack tips presents a significant complication. In
the present analyses these complications are accounted for in an
approximate manner, by avoiding that the cracks close comple-
tely. Instead, an internal hydrostatic pressure is applied to
simulate the crack surface contact, but the pressure level is
computed such that the aspect ratio of the flattened void does not
pass a specified limiting value. In this way, it is demonstrated that
the voids developing into shear cracks do result in an overall
softening behaviour of the material.

2. Problem formulation

As in Fleck et al. [7] a shear specimen is analyzed, containing a
periodic array of voids (Fig. 1), corresponding to conditions of
simple shear. The analyses are carried out for plane strain
conditions and the voids are initially circular cylindrical with
radius R0. The initial height of the shear specimen is 2B0 and the
initial spacing between void centres is 2A0. Finite strains are
accounted for and the analysis is based on a convected coordinate
Lagrangian formulation of the field equations, with a Cartesian xi

coordinate system used as reference. Here, gij and Gij are metric
tensors in the reference configuration and the current configura-
tion, respectively, with determinants g and G, and Zij ¼ 1/2(Gij�gij)
is the Lagrangian strain tensor. The contravariant components tij

of the Kirchhoff stress tensor on the current base vectors are

related to the components of the Cauchy stress tensor sij by
tij ¼

ffiffiffiffiffiffiffiffiffi
G=g

p
sij. Then, in the finite strain formulation for a J2 flow

theory material with the Mises yield surface the incremental
stress–strain relationship is of the form _tij

¼ Lijk‘ _Zk‘. The instan-
taneous moduli are specified in [19,20]. The true stress-logarith-
mic strain curve in uniaxial tension is taken to follow the power
law

� ¼
s=E; s � sY

ðsY=EÞðs=sY Þ
1=N ; s � sY

(
(1)

with Young’s modulus E, the initial yield stress sY and the power
hardening exponent N. Furthermore, the instantaneous moduli
make use of Poisson’s ratio n, and of the Mises stress se ¼ (3sijs

ij/
2)1/2, where sij is the stress deviator, and the tangent modulus Et,
which is the slope of the uniaxial stress–strain curve in Eq. (1) at
the stress level se.

The boundary conditions on the top and the bottom of the
shear specimen are specified by

_u1
¼ _UI ; _u2

¼ _UII for x2 ¼ B0 (2)

_u1
¼ � _UI ; _u2

¼ � _UII for x2 ¼ �B0 (3)

where U̇I and U̇II are constants, U̇I is prescribed, and U̇II is
calculated such that the stress ratio on the top surface has the
prescribed value

S22=S12 ¼ k (4)

The average stresses on the top surface are calculated as

S22 ¼
1

2A0

Z A0

�A0

T2 dx1; S12 ¼
1

2A0

Z A0

�A0

T1 dx1

for x2 ¼ B0 (5)

where Ti are the contravariant components of the nominal surface
tractions and ui are the displacement components. When only the
region around one void is analyzed numerically, i.e. the region for
�A0px1pA0, periodicity conditions have to be satisfied on the
two sides

u1ðx1Þ ¼ u1ðx2Þ; u2ðx1Þ ¼ u2ðx2Þ (6)

T1
ðx1Þ ¼ �T1

ðx2Þ; T2
ðx1Þ ¼ �T2

ðx2Þ (7)

where x1 and x2 are length measuring coordinates defined in
Fig. 1.

With the elongated rectangular region considered here, the
focus is on studying the interactions in a single row of voids along
the x1-axis. If there were also periodic voids in the x2-direction,
the cell would have to end at symmetry planes between voids, and
the simple boundary conditions in Eqs. (2) and (3) would be
replaced by periodicity conditions. This, however, would not be
able to represent the development of a single shear band as that
found in the present analyses, resulting from the material
imperfection due to the single row of voids. It is noted that in
the present analyses for the elongated rectangular region, the
overall lateral strain remains zero so that the lateral stress is non-
zero, and the triaxiality will not remain constant in time.

The model here makes use of a pressure load inside the void
that starts during the calculation and subsequently is increased. It
is emphasized that this does not occur in reality, but is used to
model the contact forces on the surface of a collapsed void. The
possibility of friction cannot be modelled this way, so friction is
neglected throughout the present study.

The void surface, (x1)2+(x2)2
¼ R0

2, is initially stress free so that
T1
¼ T2

¼ 0. However, at a later stage of the deformation, a
hydrostatic pressure p is applied inside the voids to simulate the
effect of crack surface contact in a relatively simple manner. When
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Fig. 1. Periodic array of cylindrical voids used to model ductile failure in shear.
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