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a b s t r a c t

A free vibration study of antisymmetric angle-ply composite plates including shear deformation

and rotatory inertia using the point collocation method and applying spline function approximations is

presented. The equations of motion for the plate are derived using the theory of Yang, Norris and

Stavsky. The solution is assumed in a separable form to obtain a system of coupled differential

equations in displacement and rotational functions and these functions were approximated by

Bickley-type splines of order three. A generalized eigenvalue problem is obtained and solved

numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients.

The vibrations of two- and four-layered plates, made up of several types of layer materials and subjected

to two types of boundary conditions are considered. Parametric studies were made of the variation

of frequency parameters with respect to the aspect ratio, side-to-thickness ratio and ply angle.

The numerical results are presented through diagrams and, in some cases, are compared with results

obtained by FEM.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Composite structural elements play a significant role in several
fields including aerospace, automobile and ship building, because
of their more desirable damping and shock absorbing character-
istics than those of homogeneous ones. In composite plates, the
influence of shear deformation becomes significant as the plate
thickness increases and hence theories incorporating this aspect
are highly desired, along with suitable numerical techniques.

Several types of theories have been developed to treat the
mechanical behavior of composite laminates. Classical laminate
plate theory (CLPT) [1] due to Kirchoff and Love neglect shear
deformation giving inaccurate results for moderately thick plates.
The frequencies calculated by using CLPT are generally higher
than those obtained by Mindlin plate theory[2]. Shear deforma-
tion theories have been proposed by many researchers among
which the first theory for laminated isotropic plates was due to
Stavsky [3]. This has been generalized to laminated anisotropic
plates by Yang et al. [4] as the YNS theory. Sun and Whitney [5]
and Whitney and Pagano [6] also discussed the YNS theory for
laminated plates consisting of an arbitrary number of bonded
anisotropic layers. Bert and Chen [7] presented a closed-form
solution for the free vibration of simply supported rectangular

plates of antisymmetric angle-ply laminates. Reddy [8] and Ghosh
and Dey [9] presented a FEM solution for laminated plates
using YNS and higher order theories, respectively. Recently,
Ferreira [10] and Kabir et al. [11] used different methods for the
analysis of laminated composite plates. Recently, Viswanathan
and Sang-Kwon Lee [12] discussed the problem of vibration of
cross-ply-laminated plates including shear deformation theory
using spline function techniques.

This paper deals with the free vibration of antisymmetric
angle-ply-laminated composite plates including shear deforma-
tion using a method of collocation with splines. The same, as well
as different types of materials are used in different layers.
The problem is formulated using the YNS theory from which is
obtained a system of coupled differential equations on a set of
assumed displacement and rotational functions, which are
functions of a space co-ordinate. A spline technique was used,
which was chosen over a number of other methods available for
such problems, like those of Galerkin, Runge–Kutta, Frobenius,
Chebyshev collocation and FEM. The choice of this method is due
to the possibility that a chain of lower order approximations, as
used here, can yield greater accuracy than a global high-order
approximation [13]. The spline strip method incidentally, was
used by Mizusawa and Kito [14] to study the vibration of
cross-ply-laminated cylindrical panels. Bickley [13] successfully
tested the spline collocation method over a two-point boundary
value problem with a cubic spline. Soni and Sankara Rao [15], Irie
et al. [16], Irie and Yamada [17], Navaneethakrishnan and
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Chandrasekaran [18], Navaneethakrishnan [19], Navaneethakrish-
nan et al. [20] and Viswanathan and Navaneethakrishnan [21,22]
have also successfully applied this method, but most of them used
only a single spline function in their problems.

In this work, three displacement functions and two rotational
functions were approximated by splines, which are cubic, in a
system of coupled equations. The convergence characteristics
were revealed. These splines are simple and clear for analytical
process and have significant computational advantage. Even on
theoretical consideration spline functions are more elegant and
convenient to conceive, construct and handle, as approximating,
interpolating and curve fitting functions than many others. It is
well known that polynomial approximations are always possible
(Weierstrass’ Theorem) and of practical use over a given set of
points. Spline is not only a polynomial approximation, but also a
generalized polynomial in the sense that it is a piecewise
polynomial that can be made as smooth as required, at the
junction points. If the approximate solution is for a boundary
(or, initial) value problem, comprised of a differential equation of
order k, the order of the spline can be limited to k+1 and not n�1,
where n is the number of points over which the solution curve is
approximated, with nbk. It is elegant since, to start with, the
function is assumed in its final form, with only the coefficients to
be determined; and only differentiations (as against integrations)
are carried out to make it satisfy the boundary value problem and
the associated boundary conditions (which may involve differ-
ential coefficients of order o ¼ k).

Assuming the solution in a separable form, a system
of coupled differential equations in displacement and rotational
functions is obtained and these functions are approximated
by Bickley-type splines of order three. Collocation with these
splines yielded a set of field equations which, along with the
equations of boundary conditions, reduce it to a system of
homogeneous simultaneous algebraic equations on the assumed
spline coefficients. Thus resulting generalized eigenvalue problem
is solved for a frequency parameter, using eigensolution techni-
que, to obtain as many frequencies as required, starting from the
least. From the eigenvectors the spline coefficients are computed
from which the mode shapes and shear rotations can be
constructed.

Parametric studies are made of the variation of frequency
parameters with respect to the aspect ratio and side-to-thickness
ratio for two and four layers and the ply angle for four layers.
Three different layer materials were considered. Significant mode
shapes were obtained. Numerical results are presented in terms of
graphs and tables and discussed.

2. Formulation of the problem

Consider a plate of length a, width b and constant thickness h

composed of an even number of thin layers of equal thickness
made up of anisotropic materials bonded together,
with an orientation angle of y and �y. The xy-plane (reference
surface) is placed at mid-depth of the plate, while the
z-axis is normal to it. Following Bert and Chen [7] and Reddy
[8], the displacement components based on YNS theory are
assumed to be

u ¼ u0ðx; y; tÞ þ zcxðx; y; tÞ; v ¼ v0ðx; y; tÞ þ zcyðx; y; tÞ; w ¼ wðx; y; tÞ

(1)

where u, v and w are the displacement components in the x, y and
z directions, respectively, u0 and v0 are the in-plane displacements
of the middle plane and cx and cy are the shear rotations of any
point on the middle surface of the plate.

The displacement components u0, v0, w and shear rotations cx

and cy are assumed in the form

u0ðx; y; tÞ ¼ uðx; yÞeiot

v0ðx; y; tÞ ¼ vðx; yÞeiot

wðx; y; tÞ ¼ wðx; yÞeiot

cyðx; y; tÞ ¼ cyðx; yÞe
iot

cxðx; y; tÞ ¼ cxðx; yÞe
iot (2)

where o is the angular frequency of vibration and t is the time.
Using Eq. (2) in the constitutive equations and the resulting

expressions for the stress and moment resultants in the equation
of motion [8], the governing equations of motion in u, v, w, cx and
cy are obtained in the matrix form

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55

2
6666664

3
7777775

u

v

cx

cy

w

2
6666664

3
7777775
¼ f0g (3)

where Lij ¼ Lji are linear differential operators in x and y, given by

L11 ¼ A11
q2

qx2
þ A66

q2

qy2
þ po2; L12 ¼ ðA12 þ A66Þ

q2

qxqy

L13 ¼ 2B16
q2

qxqy

L14 ¼ B16
q2

qx2
þ B26

q2

qy2
; L22 ¼ A66

q2

qx2
þ A22

q2

qy2
þ po2

L23 ¼ B16
q2

qx2
þ B26

q2

qy2

L24 ¼ 2B26
q2

qxqy
; L33 ¼ D11

q2

qx2
þ D66

q2

qy2
� KA55 þ Io2

L34 ¼ ðD11 þ D66Þ
q2

qxqy

L35 ¼ �KA55
q
qx
; L44 ¼ D66

q2

qx2
þ D22

q2

qy2
� KA44 þ Io2

L45 ¼ �KA44
q
qy

L55 ¼ �KA55
q2

qx2
� KA44

q2

qy2
� po2 and L15 ¼ L25 ¼ 0 (4)

Here p and I are the normal and rotary inertia coefficients defined
by

ðp; IÞ ¼

Z
rðkÞð1; z2Þ dz (5)

where r(k) is the material density of the k-th layer and K is the
shear correction coefficient. The value of K for a general laminate
depends on the lamina’s properties and lamination scheme, and
may be calculated by various static and dynamic methods [4,
23–26].

Let the edges y ¼ 0 and b of the plate be simply supported.
Then the displacements and rotational functions are assumed in
the separable form as

uðx; yÞ ¼ UðxÞ cos
npy

b

vðx; yÞ ¼ VðxÞ sin
npy

b

wðx; yÞ ¼WðxÞ sin
npy

b

cyðx; yÞ ¼ CyðxÞ cos
npy

b

cxðx; yÞ ¼ CxðxÞ sin
npy

b
(6)
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