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A B S T R A C T

The impact resistance of concrete structures is of major importance in engineering application. Compu-
tational methods are increasingly used for such types of applications but face difficulties due to the complex
physical behaviour involving large deformations and large strains. Meshfree methods seem ideally suited
to deal with these types of problems. In this manuscript, we present stochastic simulations based on the
element-free Galerkin method to predict upper and lower bounds of the impact resistance of concrete
structures. We account for stochastic distribution of material parameters and validate our results with
benchmark experiments conducted by the group of Hanchak.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Computational modelling of concrete under impact loading
remains one of the key challenges in civil engineering. Besides com-
putational methods, constitutive models are an important ingredient
of any mechanical model. For high dynamic loading it is impor-
tant to accurately capture the material response under extreme
pressure loading and the so-called strain rate effect. Popular con-
stitutive models based on damage mechanics include the work in
references 1–4. In reference 5, the authors extended the famous
Johnson-Cook (JC) [6] model to concrete materials; the JC model ac-
counts for strain rate and temperature effects and also plastic
deformations. A quasi-continuum plasticity approach capturing the
dynamic buckling strength of sandwich structures was proposed by
Rabczuk et al. [7]. Coupled damage-plasticity models were pro-
posed for instance in references 8–13. In this work, we employ a
constitutive model proposed in reference 14. It employs a dynamic
damage variable that delays the damage evolution in order to take
the strain-rate effect into account. This dynamic damage variable
depends on previous damage increments and the associated damage
rates. In reference 15, the authors extended their scalar damage
model for isotropic damage to anisotropic damage by introducing
a vectorial damage.

Another important ingredient to model the impact resistance of
concrete is the computational method. Many studies are baed on
finite element analysis [16–24]. Often, element-deletion methods
were exploited in order to allow for large deformations and com-
plete perforations [25,26]. Meshfree or meshless methods are good

alternatives to FEM [27–37] as they can model large deformation
and perforations without additional techniques and much loss of
accuracy. An overview and computer implementation aspects of
meshfree methods (MM) is discussed in reference 38. MM have also
been used to model impact events. For example, the authors in ref-
erence 39 accurately predicted the penetration depth and residual
impact velocities compared to the experiments done by the authors
in reference 40. These authors reported finite element simula-
tions underpredict the impact resistance of concrete. While dynamic
fracture in MM was initially captured quite naturally by separa-
tion of nodes [41–47], the authors in reference 32 and 48 for example
found that such an approach might lead to numerical fracture. More
sophisticated approaches such as XFEM (extended finite element
method) [49,50] or smoothed extended finite element method
[51–53], extended MM [36,54–63], extended isogeometric analy-
sis formulations [64,65], the phantom node method [66–69] or
smoothed phantom node approaches [70], recent multiscale methods
[71–75] or efficient remeshing techniques [76–82] might also be
applied to dynamic fracture [83,84]. However, while they seem well
suited to capture a moderate number of propagating cracks, their
performance to capture a large number of cracks in a large defor-
mation setting still needs to be shown. A compromise to above
mentioned approaches is the cracking particles method (CPM)
[85,86]. In the CPM, fracture is modelled by set of cracked par-
ticles. Several improvements have been incorporated into the CPM
[87–92]. Since MM are computational costly, they have been coupled
to finite element methods [30,92]. The two mentioned formula-
tions have also been applied to predict the impact resistance of
concrete structures.

The majority of the publications (see the list above) are focused
on deterministic approaches but it is well known that this can lead
to unrealistic crack patterns as the ones predicted in reference 39.
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In these simulations, cracks are too close to each other. Stochastic
approaches such as introducing some randomness in the tensile
strength [93] can alleviate this unrealistic behaviour [94–96].
However, none of these simulations consider stochastic material pa-
rameters though it is barely possible to calibrate the material
parameters uniquely and exactly.

On the other hand, every computational method needs to be vali-
dated. Classical benchmark problems for impact resistance of
concrete include the experiments by references 97–103. The ex-
periment exploited in this manuscript was carried out by the authors
in reference 104. In these experiments, concrete specimens were
subjected to impactors with various velocities.

In summary: We present stochastic simulations to predict the
impact resistance of concrete. The element-free Galerkin (EFG)
method is exploited in combination with a viscous damage-
plasticity model [14]. A simple node splitting algorithm described
in reference 89 has been exploited in order to avoid artificial frac-
ture. It can be considered as a special case of the CPM. Finally, our
simulations are validated by comparison to experimental data from
our own laboratory and from Hanchak et al. [104].

2. Governing equations and discretization

We solve the equation of motion that can be stated in weak form
by
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δWkin , δWext and δWint indicating the kinetic energy, external
work and internal energy, respectively; Ω is the domain and
Γ Γ Γt u∪ = , with Γ Γt u∩ = 0 is the external boundary consisting of
traction and displacement boundary conditions indicated by the sub-
script t and d, respectively. The components of the linear strain tensor
is denoted by εij and σ ij are the components of the Cauchy stress
tensor; the components of the traction and body force vector are
given by ti and bi, respectively; ui are the components of the dis-
placement field, ρ is the density and the superimposed ‘dot’ stands
for material time derivatives. As already mentioned in the intro-
duction, we employ the EFG method [105] to discretize the
displacement field. It can be shown that the EFG approximation is
given by
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uI being the nodal parameters of the displacement field, which are
unequal to the physical displacement values at that point, or in other
words u(xI) ≠ uI. The shape functions are denoted by NI(x). They are
obtained from miminization of a discrete L2 norm which finally leads
to:
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computed as
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w(X − XI) denoting the weighting function and pT(X) the polyno-
mial basis. More details are given in reference 105. Exponential kernel
function and linear basis functions are chosen, i.e. p xT x y( ) = [ ]1 .
Substituting the discretization, eq. (2), into the weak form of the

equation of motion, eq. (1), leads to the well-known system of
equations:

MD F F�� = −ext int (5)

where the nodal parameters uI(t) of the displacement field are stored
in the global vector D. It can be shown that the mass matrix is ob-
tained by
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The external force vector and internal force vector is given by
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N and �B being matrices containing the EFG shape functions and their
spatial derivatives, respectively. We use a stabilized [48] nodally regu-
larised [32] element-free Galerkin method [105]. We take advantage
of the updated Lagrangian kernel formulation presented in refer-
ence 39 to ensure the stability of the method while simultaneously
maintaining the applicability to extremely large deformations needed
for dynamic fracture and fragmentation.

3. Constitutive model

The employed constitutive model is based on the approach pre-
sented by Rabczuk et al. [14]. While the original approach is a
coupled damage-plasticity model, we removed the plasticity part
from the formulation which reduces the number of material pa-
rameters. Subsequently, we summarize the basic equations of this
constitutive model.

The strain rate �εij is decomposed into an elastic part �εij
e and a

damage part �εij
d :
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The stress-strain relation can be written as

σ γij ijkl klD C= −( )1 ε (9)

D = DS + DD being a damage variable which is decomposed into a static
part DS and a dynamic part DD, γ is a function accounting for high
hydrostatic pressure response and C ijkl denotes the components of
the elasticity tensor. The formulation has been implemented in rate
form as suggested in reference 14. We use the same damage sur-
faces in compression and tension
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ci, i = 1 4, ,… being material parameters, κd denotes the effective
damage strain, I e

1 is the first invariant of the elastic strain tensor,
J e

2 is the second invariant of the elastic strain tensor and εe max
a
,

( ) in-
dicates the ath eigenvalue of the elastic strain tensor. A classical
exponential function is adopted to model the damage evolution:
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where ed, e0 and g are material constants. A dynamic damage evo-
lution is introduced decaying the static damage evolution. It is
defined by
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