

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of 3,4-diaryl-5-carboxy-4,5-dihydroisoxazole 2-oxides as valuable synthons for anticancer molecules

Natalia B. Chernysheva ^a, Anna S. Maksimenko ^a, Fedor A. Andreyanov ^a, Victor P. Kislyi ^a, Yuri A. Strelenko ^a, Victor N. Khrustalev ^{b, c}, Marina N. Semenova ^d, Victor V. Semenov ^{a, *}

- ^a N. D. Zelinsky Institute of Organic Chemistry, RAS, 47 Leninsky Prospect, 119991, Moscow, Russian Federation
- ^b Faculty of Science, RUDN University, 6 Miklukho-Maklay Street, 117198, Moscow, Russian Federation
- ^c A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28 Vavilov Street, 119991, Moscow, Russian Federation
- ^d N. K. Koltzov Institute of Developmental Biology, RAS, 26 Vavilov Street, 119334, Moscow, Russian Federation

ARTICLE INFO

Article history:
Received 25 May 2017
Received in revised form
24 September 2017
Accepted 9 October 2017
Available online 13 October 2017

Keywords: 3,4-Diarylisoxazoles 3,4-Diarylisoxazoline oxides Carbonylmethylpyridinium Anticancer synthons

ABSTRACT

The convenient regioselective scalable synthesis of 3,4-diaryl-5-carboxy-4,5-dihydroisoxazole 2-oxides was developed based on a condensation of simple starting materials (arylbenzaldehydes, arylnitromethanes, and ethoxycarbonylmethylpyridinium bromide) under mild conditions. The obtained synthons can be applied for the synthesis of 3,4-diarylisoxazole derivatives capable of suppressing malignant growth.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Isoxazoles and isoxazolines exhibit a broad range of biological effects, including antiviral, anti-inflammatory, and anticancer activities. $^{4-8}$

o-Diarylazoles can be considered as *cis*-restricted analogues of combretastatin A-4 (**CA4**, Fig. 1), a highly potent natural cytostatic originally isolated from the bark of African willow tree *Combretum caffrum*. To avoid *cis-trans* isomerization that causes activity decrease, diverse N-containing rings have been introduced to replace the ethene linker, resulting in compounds with antiproliferative antitubulin effects comparable with those of **CA4**. Among them, 5-unsubstituted diaryl-o-isoxazole **A** (Fig. 1) effectively inhibited both cancer cell growth and *in vitro* tubulin polymerization. Polyoxygenated 3,4-diarylisoxazoles with 5-carboxamide groups (e.g., **B**, Fig. 1) were reported to inhibit Hsp90, a chaperone protein that assists folding of various proteins including those implicated in malignancy.

Several synthetic strategies for diarylisoxazolines and

Corresponding author.

E-mail address: vs@zelinsky.ru (V.V. Semenov).

diarylisoxazoles have been reported. Due to the challenges in regioselective functionalization, currently available synthetic routes for 3,4-diarylisoxazoline N-oxides as well as for 3,4-diarylisoxazoles are rather scarce. The known methods require expensive and commercially inaccessible reagents and catalysts, give low yields, and are practically not scalable. Considering the literature evidence, the present study was aimed to the development of an efficient, inexpensive, and scalable procedure for regioselective synthesis of 3,4-diaryl-isoxazoline N-oxides 5-carboxylates (C, Fig. 1) from available materials under mild conditions. The ability of isoxazolines to rearrange readily to the respective isoxazoles 12–14 allows for their further use in the preparation of molecules with potential anticancer activity.

2. Results and discussion

Recently it was shown that arylmethylidene nitro acetic esters 1 reacted with ethoxycarbonyl methylpyridinium bromide $\bf 2$ in the presence of Et₃N to afford 4-aryl-isoxazole-3,5-dicarboxylates $\bf 3$ in high yields (Scheme 1).¹⁵

A reproduction of this reaction using 3-(3,4,5-trimethoxyphenyl)-2-nitropropene derivative of **1** showed a formation of intermediate isoxazoline oxide **4a** (Scheme 2). Notably,

Fig. 1. Chemical route to anticancer combretastatin A-4 (CA4) analogs with 3,4-diarylisoxazole fragments. A Inhibitor of tubulin polymerization. B Hsp90 inhibitor.

Scheme 1. Synthesis of diethyl 4-(aryl)isoxazole-3,5-dicarboxylates 3.

isoxazole **3a** was the only product at the reaction temperature of 20–60 °C, whereas at 10 °C both **3a** and **4a** were found in the reaction mixture. Isoxazoline N-oxide **4a** was separated, and its structure was confirmed by ¹H-NMR-, MS-, and X-ray analyses (Fig. 2). This result led to a proposal that 3,4-diaryl-5-ethoxycarbonyl-4,5-dihydroisoxazole 2-oxides **8** could be obtained selectively by the reaction of diarylnitrostilbenes **7** with pyridinium salt **2.** Corresponding starting nitrostilbenes **7a**—**j** were easily synthesized by condensation of phenylnitromethanes **5** with aldehydes **6**. ^{16,17} Isoxazolines **8a**—**j** were formed as single products under the mild conditions at different temperatures and reaction times: 20 °C, 100–200 h, or 60 °C, 4–5 h. Importantly, the starting pyridinium bromide **2** and nitrostilbenes **7** can be readily obtained in an amount of 10–20 g, affording isoxazolines **8** in multi-gram scale. The structures of **8** were proved by ¹H-, ¹³C-NMR-, and MS-analyses.

The rearrangement of 3,4-diarylisoxazoline oxides to isoxazoles is well documented in the literature.^{12–14} As an example, we selected a procedure in water solution of 2% NaOH at room temperature.¹² for the rearrangement of **8a** (Scheme 3).

4-(4-Chlorophenyl)-5-(ethoxycarbonyl)-3-(4-methoxyphenyl)-4,5-dihydroisoxazole 2-oxide (**8a**) was quantitatively hydrolysed to the corresponding 3,4-diaryl-4,5-dihydroisoxazole 2-oxide (**9a**) in acidic medium. Then **9a** was rearranged in alkaline medium with

simultaneous decarboxylation directly to unsubstituted isoxazole **10a** at 20 °C (200 h) or 60 °C (6 h). **10a** was easily separated in alkaline media in good yield over two steps (67%).

Isoxazoline N-oxide 4a was characterized by single-crystal X-ray diffraction study. The structure is shown in Fig. 2 along with the atomic numbering schemes. The geometrical parameters for 4a are available in the Supplementary Data. The central isoxazoline ring adopted an envelope conformation, with the C5 carbon atom deviating from the mean plane passed through the other atoms of the ring by 0.222(2) Å. The 4-phenyl and 5-ethoxy carbonyl substituents were located in gauche (trans) configuration $(-127.86(10)^{\circ})$. Thus, the crystal of **4a** consisted of enantiomeric pairs with the (4RS,5RS)-relative configuration of the asymmetric centers. The 3-carboxylate fragment lay within the basal plane of the isoxazoline ring (the dihedral angle is $4.16(7)^{\circ}$). The ethoxy group of the 3-carboxylate substituent had gauche conformation relative to the carbonyl group (the C6-O4-C7-C8 torsion angle is $-78.47(14)^{\circ}$), while the ethoxy group of the 5-carboxylate substituent was trans arranged to the carbonyl group (the C18-O9-C19-C20 torsion angle is 174.99(10)°). The 3- and 5methoxy groups in 4-(3,4,5-trimethoxyphenyl) substituent were coplanar to the plane of the benzene ring (the C10-C11-O5-C15 and C14−C13−O7−C17 torsion angles are −3.31(17) and 0.23(17)°, respectively), whereas the 4-methoxy group in 4-(3,4,5-

Download English Version:

https://daneshyari.com/en/article/7828184

Download Persian Version:

https://daneshyari.com/article/7828184

<u>Daneshyari.com</u>