
International Journal of Mechanical Sciences 49 (2007) 1325–1335

A unified generalized thermoelasticity; solution for cylinders and spheres

A. Bagria, M.R. Eslamib,�

aAmirkabir University of Technology, P.O. Box 15875-4413 Tehran, Iran
bMechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Received 18 November 2006; received in revised form 29 March 2007; accepted 15 April 2007

Dedicated to Professor Franz Ziegler for his 70th birthday

Available online 20 April 2007

Abstract

A new unified formulation for the generalized theories of the coupled thermoelasticity based on the Lord–Shulman, Green–Lindsay,

and Green–Naghdi models is proposed in this paper. The unified form of the governing equations is presented by introducing the unifier

parameters. The formulations are derived and given for the anisotropic heterogeneous materials. The unified equations are reduced for

the isotropic and homogeneous materials. Transforming the governing equations into the Laplace domain, they are analytically solved in

the space domain for a hollow sphere and cylinder, where a parameter is introduced to consolidate the solution for the sphere and

cylinder in a unified form. A thermal shock load is applied to the inner surface of the sphere and cylinder and the results are presented

using a numerical inversion technique of the Laplace transform. The results are validated with the known data in the literature.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Generalized thermoelasticity; Unified formulation; Thick cylinders; Thick spheres; Thermal shock

1. Introduction

The conventional theory of thermoelasticity is based on
the Fourier’s heat conduction law. Due to the parabolic
nature of the energy equation of this theory, infinite
propagation speeds for the thermal disturbances are
predicted. The concept of the hyperbolic nature involving
finite speeds of thermal disturbance is reported by Maxwell
[1] for the first time, known as the second sound. Chester
[2] provides some justification to the fact that the so-called
second sound must exist in any solid. Most of the
approaches that came out to overcome the unacceptable
prediction of the classical theory are based on the general
notion of relaxing the heat flux in the classical Fourier heat
conduction equation, thereby introducing a non-Fourier
effect. One of the simplest forms of these equation is due to
the work of Lord and Shulman [3]. In the Lord–Shulman
(LS) theory a relaxation time is introduced and the
Fourier’s heat conduction equation is modified. Another
thermoelasticity theory that admits the second sound effect

is reported by Green and Lindsay [4]. In the Green–-
Lindsay (GL) theory the Duhamel–Neumann relationships
and the entropy relation are modified by introducing two
relaxation times that relate the stress and entropy to the
temperature rate. An alternative approach in the formula-
tion of a theory predicting the finite propagation speed of
the thermal disturbances is due to Green and Naghdi
(GN), where they formulated three models of thermo-
elasticity for homogeneous and isotropic materials [5,6]
labeled as models I, II, and III. These theories of
thermoelasticity (LS, GL, and GN theories) are known as
the generalized theories, or thermoelasticity theories with
the second sound effect or with finite thermal wave speed.
Ignaczak [7] suggested a combined system of coupled
equations for the LS and GL theories. Also, the same
author reported a survey of the domain of influence for the
results of the LS and GL theories [8]. Francis [9], Ignaczak
[7], and Chandrasekharaiah [10,11] have reported brief
reviews of these theories.
In situations such as those involving very short transient

duration and/or when the sudden high heat flux is applied
to a structure, the second sound effect is important. Nayfeh
[12] and Nayfeh and Nemat-Nasser [13] used the Lord and
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Shulman theory to study the effects of the thermal coupling
on the plane harmonic thermoelastic waves in unbounded
media and Rayliegh surface waves propagating along the
free surface of a half space. Also, the important role of the
coupling term in the response of elastic solids under
transient thermal loads is investigated by Amin and
Sierakowski [14]. Chen and Dargush [15] used the
boundary element method to analyze the transient and
dynamic problems in generalized thermoelasticity of a half-
space using the Laplace transform method. Chen and Lin
[16] employed a hybrid numerical method based on the
Laplace transform and control volume method to analyze
the transient coupled thermoelastic problems with relaxa-
tion times involving a nonlinear radiation boundary
condition. Boundary element method is employed by
Hosseini Tehrani and Eslami [17,18] for the analysis of
coupled thermoelastic problems in a finite domain, where
they studied the coupling coefficient effects on the thermal
and elastic waves propagation. A transfinite element
method is considered by Bagri and Eslami [19] to study
the generalized coupled thermoelasticity of an annular disk
based on the LS theory. They investigated the thermal and
stress waves propagation through the radius of the disk
and showed that for thermal shock problems the coupling
coefficient has significant effect on the variation of thermal
stresses, displacement, and temperature.

Several investigators employed the GN models to solve a
variety of thermoelastic problems. The uniqueness of
solution of the governing equations for the GN theory
formulated in terms of stress and energy-flux is established
in Ref. [20]. Chandrasekharaiah [21] studied the one-
dimensional thermal wave propagation in a half-space
based on the GN model due to a sudden exposure of
temperature to the boundary, using the Laplace transform
method. Chandrasekharaiah [22] also presented the com-
plete solutions of the governing field equations for the GN
theory. Sharma and Chauhan [23] investigated the dis-
turbances produced in a half-space under the application of
a point load and thermal source acting on the boundary of
the half-space. The material is assumed to be homogeneous
and isotropic. The Laplace and Hankel transforms are used
and different theories of generalized thermoelasticity are
employed to provide a basis to compare the results. Taheri
et al. [24] studied the problem of coupled thermoelasticity
of a layer based on the GN theory. The problem was
transformed into the Laplace domain, where the analytical
solution was obtained. An inverse numerical method was
then employed to obtain the solution in real time domain.

In this paper, a new unified formulation for the
generalized coupled thermoelasticity theories based on
the LS, GL, and GN models is proposed. The unifier
parameters are introducing to consolidate the equations of
the LS, GL, and GN theories into a single system of
equations for the anisotropic and heterogeneous materials.
The equations are also simplified for the isotropic and
homogeneous materials. The reduced equations for the
isotropic and homogeneous material are considered and

are transformed into the Laplace domain. Analytical
solution of the equations are obtained for hollow sphere
and cylinder, where a term is introduced to consolidate the
solutions for the sphere and cylinder in a unified form. A
thermal shock load is applied to the inner surface of the
sphere and cylinder, where the solution in analytical form
is obtained in the space domain. The numerical inversion
of the Laplace transform is then employed to obtain the
solution in the time domain.

2. Unified formulations of the LS, GL, and GN theories

The fundamental equations of the LS, GL, and GN
theories in a unified form are presented here introducing
the terms Z and t3 as unifier parameters. These equations in
general form are:
Equations of motion:

r � rþ rb ¼ r€u, (1)

Linear strain–displacement relations:

E ¼ 1
2
ðruþ ðruÞ0Þ, (2)

Hooke’s law for the linear thermoelastic materials:

r ¼ CE� bðT � T0 þ t1 _TÞ, (3)

Energy balance equation:

r � q ¼ R� T0
_S, (4)

Entropy relationship:

S ¼
rc

T0

� �
ðT þ t2 _T � T0Þ þ b : E�

1

T0

bC � rT , (5)

Heat conduction equation:

Z qþ Z s _qþ t3 _q ¼ �ZKrT � t3 Kr _T � t3K
� rT � bC _T ,

(6)

where r is the mass density, r is the Cauchy’s stress tensor,
u is the displacement vector, b is the body force vector per
unit mass, q is the heat flux vector, T0 is the reference
temperature, T is the absolute temperature, S is entropy
per unit volume, R is the internal heat source per unit
volume per unit time, E is the strain tensor, b is the second
order tensor of stress–temperature moduli, K is the second
order tensor of thermal conductivity, C is the forth order
tensor of elastic moduli, and c is the specific heat,
respectively. Also, s is the second order tensor of relaxation
times in the LS model, t1 and t2 are the relaxation times
and bC is a vector of new material constants proposed by
Green and Lindsay, and K� is the second order tensor of
new material constants associated with the GN theory.
Also, Z and t3 are terms introduced to consolidate all
theories into a unified system of equations. In Eqs. (1)–(6)
the superscript dot (.) denotes differentiation with respect
to time. Meanwhile, r is the del operator and indicates the
gradient of a function, ðr:Þ denotes the divergence
operator, and the superscript prime ð0Þ indicates the
transpose of the matrix. In Eqs. (1)–(6) the double dot
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