EI SEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Studies on synthesis and photoreaction of tricycloundecanes endowed with β , γ -enone chromophore: Towards angular triquinanes and annulated bicyclo[4.2.0]octanes

Raghaba Sahu, Vishwakarma Singh^{*}

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

ARTICLE INFO

Article history:
Received 26 June 2017
Received in revised form
17 September 2017
Accepted 21 September 2017
Available online 22 September 2017

Keywords: Spiroepoxycyclohexa-2,4-dienones Diels-Alder reaction 1,2-Acyl shift Oxa-di-π-methane rearrangement 1,3-Acyl shift

ABSTRACT

Cycloaddition of annulated cyclohexa-2,4-dienone with electron deficient π -partners leading to tricycloundecanes having a β , γ -enone chromophore has been reported. Studies on the photochemical reaction of the chromophoric systems upon sensitized and direct irradiation has also been presented. A highly unusual behavior of the chromophoric systems upon sensitized irradiation has also been presented.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Polyquinanes in general have stimulated a long and sustained interest over several decades by virtue of their molecular architecture and biological properties. ^{1–3} Of various types, a large number of natural products contain linearly fused triquinane ring system such as **1** (Fig. 1). Angularly fused triquinane ring system of type **2** is also present in naturally occurring sesquiterpenes such as isocomenes, pentalenenes, silphinane in addition to others. ^{1,2} Basar and co-workers have isolated a novel sesquiterpene ventricosene **3** (Fig. 1) having angularly fused triquinane ring system in its structure from the essential oils of the liverwort *Lophozia ventricosa*. ^{4a} More sesquiterpenes containing angular triquinanes were isolated by Arnold and co-workers. ^{4b} Recently, a synthesis of ventricosene employing a gold catalyzed ring expansion has been reported. ⁵

While a number of methods are known for the synthesis of linearly fused tricyclopentanoids, only a few routes have been developed for angularly fused triquinanes. We have a longstanding interest in the synthesis of bridged polycyclic compounds containing $\beta_1 \gamma$ -enone chromophore and their photochemical

E-mail address: vks@chem.iitb.ac.in (V. Singh).

transformation leading to various types of ring fused molecular structures in highly stereoselective manner.⁶

In order to extend our earlier approach to angular polyquinanes⁷ and the current interest in synthesis of ventricosene, we considered developing synthesis of triquinane of type **4** having quaternary centre bearing geminal dimethyl group in one of the five membered rings via photochemical 1,2-acyl shift in embellished tricyclic compound **6**. Moreover, it was also interesting to explore 1,3-acyl shift in enone **6** that would provide tricyclic compounds of type **5** since functionalized hydrindanes fused with a cyclobutane ring are potential precursors for synthesis of various types of carbocycles including polyquinanes.⁸

We wish to report herein synthesis of tricyclic compounds of type **6** from *o*-hydroxymethyl phenol **7** via oxidative dearomatization, cycloaddition and studies on the photochemical reactions of **6** upon sensitized (3T) and singlet (1S) excitation.

2. Results and discussion

In order to realize the above objective, o-hydroxymethyl phenol **7** was required. It was considered that the alkylation of 5-methoxyindanone **8** to ketone **9** followed by reduction of the carbonyl group would give methoxyindane **10** that upon demethylation and hydroxymethylation would provide the compound **7**.

^{*} Corresponding author.

Fig. 1. Polyquinanes and precursors.

The dimethylated indanone **9** has been prepared earlier by alkylation of **8** with methyl iodide in the presence of KO^tBu. We prepared compound **9** by methylation of **8** in the presence of NaH-THF in excellent yield (Scheme 1). The reduction of the carbonyl group in **9** turned out to be not as simple as it appeared. Reaction of **9** under Wolf-Kishner condition and reduction with Et₃SiH in the presence of CF₃SO₃H and/or TMS-OTf was not fruitful, and gave only unreacted starting material. Attempted reduction of ketone **9** with H₂, Pd/C¹² was also unsuccessful.

Finally, treatment of ketone **9** with polymethylhydrosiloxane (PHMS)¹³ in the presence of $PdCl_2$ gave the compound **10** in good yield. Demethylation of **10** with BBr_3 furnished the phenol **11** that upon hydroxymethylation gave the required o-hydroxymethyl phenol **7** along with a minor amount of the product **12** (Scheme 1).

After having prepared the *o*-hydroxymethyl phenol **7**, its oxidative dearomatization to spiroepoxycyclohexa-2,4-dienone **13** and interception with phenylvinyl sulphone was attempted. Hence, a solution of compound **7** and phenyl vinyl sulphone was treated with sodium metaperiodate ¹⁴ according to our procedure developed earlier. ¹⁵ However the adduct **16a** was not obtained, the cyclohexadienone **13** was isolated instead. Therefore, the bicyclic spiroepoxycyclohexa-2,4-dienone **13** was heated with phenyl vinyl sulphone in a sealed tube which furnished the tricyclic ketoepoxide **16a** as a major product along with the aldehyde **15** (Scheme **2**). The aldehyde **15** arises due to the rearrangement of oxirane ring in **13** followed by aromatization. Similarly, heating the cyclohexadienone **13** with ethyl acrylate also gave the adduct **16b** in good yield.

It was rather surprising to isolate the annulated spiroepoxycyclohexa-2,4-dienone **13** during the above oxidation especially since cyclohexa-2,4-dienones have transient existence and undergo instantaneous Diels-Alder dimerization. ^{6c,e,14} Indeed, a similar spiroepoxycyclohexa-2,4-dienone which is devoid of geminal methyl groups in the five membered ring, is known to undergo rapid Diels-Alder dimerization. ^{7a}

The cyclohexadienone **13** was reluctant to dimerize, it was fairly stable and could be thoroughly characterized. The reluctance of cyclohexa-2,4-dienone **13** towards dimerization is presumably a manifestation of the steric effect of geminal methyl group present in the five membered ring and proved beneficial as it provided a direct access to desired keto-epoxides **16a,b**.

The structure of the adduct **16a** was established from the following spectroscopic features. The IR spectrum of the adduct **16a** showed absorption band at 1739 cm⁻¹ due to the presence of carbonyl group. The ¹H NMR (400 MHz) spectrum of **16a** displayed signals at δ 7.87 (d, J=7.5 Hz, 2H), 7.66 (overlapped dd, $J_1=J_2=7.5$ Hz, 1H) and 7.58 (overlapped dd, $J_1=J_2=7.5$ Hz, 2H) for five aromatic proton of the sulphone moiety which indicated that cycloaddition had occurred. It further showed highly characteristic signals at δ 3.17 (part of an AB system, $J_{AB}=5.9$ Hz, 1H) and at δ 2.88 (part of an AB system, $J_{AB}=5.9$ Hz, 1H) due to protons of the oxirane ring. The signals due to methyl groups were observed at δ 1.23 (s, 3H) and 1.10 (s, 3H). In addition, signals were displayed at δ 3.69–3.63 (m, 2H), 2.67–2.63 (m, 1H), 2.60–2.53 (d, J=15.5 Hz, 1H), 2.48–2.22 (m, 4H), 2.15 (dd, $J_1=13.2$ Hz, $J_2=6.1$ Hz, 1H) due to other methine and methylene protons. The ¹³C NMR (100 MHz)

Scheme 1. Preparation of the aromatic precursor **7**.

Download English Version:

https://daneshyari.com/en/article/7828240

Download Persian Version:

https://daneshyari.com/article/7828240

<u>Daneshyari.com</u>