ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Enantioselective carbonyl-ene-type cyclization of α -ketoester and 2-substituted vinylsilane catalyzed by a chiral Cu-BOX complex

Haruka Homma a, Shinji Harada a,b,*, Atsushi Nishida a,b,*

- ^a Graduate School of Pharmaceutical Sciences, 1-8-1 Inohana, Chuo-ku, Chiba 2608675, Japan
- ^b Molecular Chirality Research Center, 1-33 Yayoi-cho, Inage-ku, Chiba 2638522, Japan

ARTICLE INFO

Article history:
Received 28 April 2018
Revised 29 May 2018
Accepted 1 June 2018
Available online 2 June 2018

Keywords:
Carbonyl-ene cyclization
Prins reaction
Asymmetric catalysis
Indenol
Indacene
Tetrasubstituted carbon

ABSTRACT

We developed an enantioselective carbonyl-ene-type cyclization using 2-substituted vinylsilane as a nucleophilic ene moiety catalyzed by a chiral copper-BOX complex. This reaction is the first example of enantioselective carbonyl-ene cyclization using a 1,2-disubstituted olefin. This methodology gave chiral indenols with a tetrasubstituted carbon.

© 2018 Elsevier Ltd. All rights reserved.

Introduction

The carbonyl-ene reaction is an important carbon-carbon bondforming reaction, and catalytic and enantioselective variants have been reported with a variety of chiral catalysts. The ene component is considered to act as a nucleophile. Thus, 1,1-disubstituted or trisubstituted olefins were generally used in past reports, and less reactive 1,2-disubstituted olefins 1b were rarely utilized. As far as we know, there has been no successful example on catalytic and enantioselective carbonyl-ene cyclization of 1,2disubstituted olefins. Evans's group reported the use of 2substituted vinylsilanes as a 1,2-disubstituted ene moiety, taking advantage of the β-silyl cationic effect of the intermediate (Scheme 1-A).²⁻⁴ The enophile component is preferably electrondeficient, and thus aldehydes or glyoxylates have generally been used. When ketones or their derivatives were used as an enophile, a tertiary alcohol would be constructed.⁵ Yang's group first used α-ketoester as an enophile in enantioselective carbonyl-ene cyclization using a chiral Cu-bis(oxazoline) (BOX) catalyst (Scheme 1-B).^{6,7} Although they achieved the construction of carbocycles with a chiral tetrasubstituted carbon, 20 mol% of the catalyst was required.

Here, we report the catalytic and enantioselective carbonylene-type *cyclization* between α -ketoester and 2-substituted vinylsilane (Scheme 1-C). (*E*)-2-oxo-2-(2-(2-(trimethylsilyl)vinyl) phenyl)acetate (1) should have good reactivity in carbonyl-ene cyclization since the cationic intermediate 2 would be stable as β -silyl cation along with benzyl cation. According to Mikami's report, two products are presumed in this reaction. Compound 3 would be formed via silyl transfer of 2, and 4 would be generated by desilylation of 3. These two products are chiral indenol with a tetrasubstituted carbon, which is seen as a core skeleton in biologically active compounds.

Results and discussion

We set ethyl (*E*)-2-oxo-2-(2-(2-(trimethylsilyl)vinyl)phenyl)acetate (**1a**) as a substrate and screened catalysts using various metal triflic imidates, since we have been focusing on demonstrating the synthetic utility of metal triflic imidates (M_m(NTf₂)_n) as a Lewis acid. ^{9,10} By a concise metal screening, Cu(NTf₂)₂ gave the highest yield. ¹¹ Before starting chiral ligand screening, we tried Yang's catalyst (Cu(OTf)₂-L1), ⁶ but it was not effective in this reaction (entry 1, Table 1). With 20 mol% of Cu(NTf₂)₂ and L1, the yield and ee of **4a** were both increased compared to those of entry 1 (entry 2). Next, we screened chiral BOX ligands **L2-7**. Among them, ligands **L2**, **L6**, and **L7** with benzyl substituents at the methylene bridge ¹² improved the yield of the product (entries 3, 7, and 8). We chose **L2**

^{*} Corresponding authors at: Graduate School of Pharmaceutical Sciences, 1-8-1 Inohana, Chuo-ku, Chiba 2608675, Japan.

E-mail addresses: s.harada@faculty.chiba-u.jp (S. Harada), anishida@faculty.chiba-u.jp (A. Nishida).

Scheme 1. Catalytic and enantioselective carbonyl-ene reactions.

as the optimal ligand for the enantioselective carbonyl-ene-type cyclization, because it gave the products in the highest yield (totally 95%) with the highest enantioselectivity (93% ee for **4a**).

Table 1 Screening of chiral copper catalyst.

10 mol% of
$$Cu(NTf_2)_2$$
-**L2** catalyst gave a result similar to the reaction using 20 mol% catalyst, except for the ratio of **3a** and **4a** (entry 9).^{13,14}

We then examined the substituent effects on the ketoester moiety. With Cu(NTf₂)₂-L2 catalyst, we found that 5 mol% of the catalyst was enough for completion of the reaction. The reaction procedure was simplified by the treatment of the reaction mixture with aqueous HCl to converge the mixture of products 3 and 4 to the single product 4 (entry 1, Table 2). Methyl ester 1b gave 4b in excellent yield and enantioselectivity (entry 2). Ethyl thioester 1c decreased the yield and enantioselectivity (entry 3). Using methyl ester derivatives, substituent effects on the benzene ring were then investigated. Substrates with a methyl group at the C4, C5, or C6 position afforded the corresponding products in good yields and ees (entries 4 to 6). Substrates with electron-withdrawing groups. F or Cl. at the C4 position had relatively low reactivity, and thus a higher temperature was required for completion of the reaction (entries 7 and 8). On the other hand, an electron-donating group at the C5 position increased the reactivity, and 4i was obtained in excellent yield even for 30 min with moderate enantioselectivity (entries 9 and 10). Substrate 1j with a bulky silyl group (Si = TBS) gave 4a in 3% yield with 41% ee (entry 11), since it might not be preferable to form Cu(NTf₂)₂**-L2-1j** complex due to steric repulsion between a chiral Cu complex and a bulky TBS group.

We also examined the catalytic and enantioselective double carbonyl-ene-type cyclization with **5** (Scheme 2). With 10 mol% of chiral Cu(NTf₂)₂-**L2** complex, indacene derivative *cis*-diol-**6** was obtained in 89% yield with >99% ee in excellent diastereoselectivity. Compound **7** was also obtained in 11% yield as a mixture of keto- and enol-forms. The relative and absolute configurations of **6** were unambiguously determined by X-ray crystallographic analysis. ¹⁵

Entry	Cu salt	BOX ligand	3a (%)	4a (%)	% ee of 4a	1a (%)
1	Cu(OTf) ₂	L1	0	9	54	83
2	$Cu(NTf_2)_2$	L1	0	15	65	79
3	$Cu(NTf_2)_2$	L2	13 ^a	82	93	5 ^a
4	$Cu(NTf_2)_2$	L3	0	15	-29	85
5	$Cu(NTf_2)_2$	L4	0	24	-22	76
6	$Cu(NTf_2)_2$	L5	0	25	-16	65
7	$Cu(NTf_2)_2$	L6	12 ^a	61	-52	20 ^a
8	$Cu(NTf_2)_2$	L7	1 ^a	47	-24	47 ^a
9	Cu(NTf ₂) ₂ ^b	L2 ^b	72	28	93	0

^a Determined by ¹H NMR of the mixture of **3a** and **1a**.

^b 10 mol% of the reagent was used.

Download English Version:

https://daneshyari.com/en/article/7828633

Download Persian Version:

https://daneshyari.com/article/7828633

<u>Daneshyari.com</u>