
Tetrahedron Letters 59 (2018) 2412-2417

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Chiral iminophosphoranes organocatalyzed asymmetric hydroxylation of 3-substituted oxindoles with oxaziridines

^a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China ^b Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, PR China

^c Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China

ARTICLE INFO

Article history: Received 31 March 2018 Revised 5 May 2018 Accepted 10 May 2018 Available online 16 May 2018

Keywords: Organocatalysis Superbase Iminophosphorane Oxindoles Hydroxylation

ABSTRACT

Enantioselective hydroxylation of N-protected 3-substituted oxindoles has been developed via chiral iminophosphorane catalysis with oxaziridines as oxidants. As such, a variety of optically active 3-substituted-3-hydroxy-2-oxindoles were obtained in excellent yields (91-99%) and moderate to excellent level of enantiomeric excess (up to 94% ee).

© 2018 Elsevier Ltd. All rights reserved.

Introduction

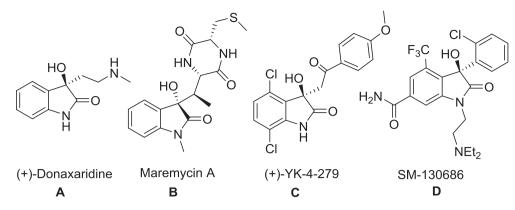
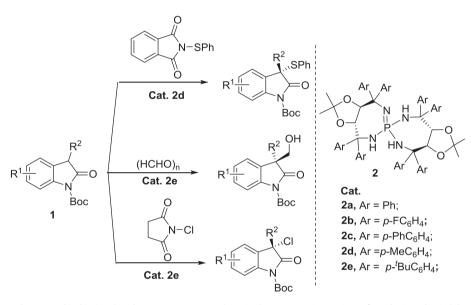
The catalytic asymmetric synthesis of chiral 3-substituted-3hydroxy-2-oxindoles has attracted much interest of organic chemists due to the biological activities associated with oxindole derivatives (A and B; Fig. 1).^{1a} For instance, several lead compounds with 3-hydroxy-2-oxindole skeleton were evaluated as clinical candidates in the drug development process (C and D; Fig. 1).^{1c} Therefore, great synthetic efforts in the preparation of optically active 3-substituted-3-hydroxy-2-oxindoles resulted in various novel methodologies by enantioselective carbon-oxygen bond construction, which has been a subject of many reviews.¹

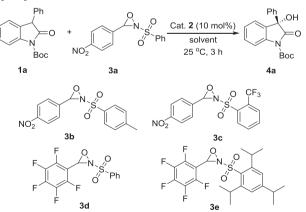
The enantioselective carbon-oxygen (C-O) bond formation of 3-substituted-3-hydroxy-2-oxindoles in a catalytic manner have been achieved in several reported works by using both organometallic catalysis and organocatalysis.² In 2006, Shibata and Toru reported an enantioselective hydroxylation of oxindoles using zinc complex with bis(oxazoline) ligand of DBFOX.³ Later, Itoh et al. employed cinchonidine-derived phase-transfer catalyst hydroxylation.⁴ The research group of Feng employed rare-earth metal/N,N'-dioxide complex in asymmetric hydroxyamination of oxindoles with nitrosobenzenes.⁵ Similar strategy of organocatalytic enantioselective aminooxygenation of oxindoles was realized by Barbas.⁶ The research group of Tan developed pentanidium-catalyzed α -hydroxylation of 3-substituted-2-oxindoles using molecular oxygen in good yields and excellent enantioselectivities.⁷ With binaphthyl derived N,N,O-tridentate phenanthroline as an axially chiral ligand, a copper complex was used as catalyst in asymmetric hydroxylation of oxindoles with oxaziridine as an oxidants by Nishiyama in 2015, the corresponding products were afforded in excellent enantioselectivities.⁸ Recently, Ooi et al. reported that peroxy trichloroacetimidic acid acted as oxygenating agent in asymmetric α -hydroxylation of 3substituted oxindoles, the responding products were obtained in excellent enantioselectivities with the catalyst of L-alanine-derived chiral 1,2,3-triazolium bromide.⁹ Despite significant advance has been achieved in this field, the exploration of more catalytic systems to deliver oxindoles bearing a chiral 3-hydroxy-substituted quaternary stereocenter is still necessary. We have recently embarked on the development of a class of tartaric acid derived iminophosphoranes as organocatalysts in the asymmetric transformations of 3-substituted oxindoles (Scheme 1).^{10,11} We report herein the efficient use of iminophosphoranes as organocatalysts

with molecular oxygen as an oxidant for this enantioselective

^{*} Corresponding authors at: Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, PR China.

E-mail addresses: xuzhenjiang@sioc.ac.cn (Z.-J. Xu), jianweihan@ecust.edu.cn (J. Han).


Fig. 1. Selected samples of 3-substituted-3-hydroxy-2-oxindoles.

Scheme 1. Chiral iminophosphoranes as organocatalysts in the asymmetric reactions of 3-substituted oxindoles.

Table 1

Screening of reaction conditions for asymmetric hydroxylation.^a

Entry	Cat. 2	Solvent	3	Yield [%] ^b	ee [%] ^c
1	2a	Toluene	3a	65	0
2	2b	Toluene	3a	76	28
3	2c	Toluene	3a	98	60
4	2d	Toluene	3a	78	-9
5	2e	Toluene	3a	99	22
6	2c	Toluene	3b	67	60
7	2c	Toluene	3c	95	60

Download English Version:

https://daneshyari.com/en/article/7828890

Download Persian Version:

https://daneshyari.com/article/7828890

Daneshyari.com