ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Enantioselective α -chlorination of β -keto esters and amides catalyzed by chiral imidodiphosphoric acids

Xukai Guan^a, Dong An^a, Guofeng Liu^a, Heng Zhang^a, Jigang Gao^a, Tianyun Zhou^a, Guangliang Zhang^{a,*}, Suoqin Zhang^{a,b,*}

ARTICLE INFO

Article history: Received 8 March 2018 Revised 6 May 2018 Accepted 11 May 2018 Available online 12 May 2018

Keywords: Asymmetric synthesis Enantioselectivity α -Chlorinated β -indanone esters and amides Brønsted acid Organocatalysis

ABSTRACT

Chiral imidodiphosphoric acids were employed as catalysts for the enantioselective α -chlorination of β -keto esters and amides using NCS as the chlorine source, providing a series of optically active products with good to high enantioselectivities (74–95% ee) and excellent yields (92–99%). This represents the first report of the Brønsted acid catalyzed enantioselective α -chlorination of cyclic β -keto derivatives.

© 2018 Elsevier Ltd. All rights reserved.

Introduction

Due to the pharmaceutical activity of optically active halogencontaining molecules, as well as their ability to serve as the linchpin for further stereospecific manipulations, the enantioselective construction of carbon-halogen bonds has gained significant attention in modern organic synthesis, drug discovery and material sciences over the past decades.¹ Since Togni and co-workers disclosed the first example of the asymmetric α -chlorination of β -keto esters with an isolated chiral Ti-(TADDOLato) catalyst in 2000,² extensive efforts have been devoted to this area.³ Regarding metal-mediated approaches, the catalytic systems employed include a series of Lewis acidic Cu(II), Pd(II), Ni(II), Cu(I), Co(II) or Zn(II) species accompanied by the corresponding chiral ligands.⁴ The results were altered with substrate variations and the field has developed gradually. Other catalytic systems such as VAPOL phosphates were also applied in the asymmetric chlorination of 3-substituted oxindoles.

Organocatalytic strategies for the asymmetric synthesis of α -chloro- β -keto esters have also been developed but remain rarely reported. In 2005 Melchiorre and co-workers reported the first organocatalytic asymmetric α -halogenation of 1,3-dicarbonyl com-

E-mail addresses: zhgl_jl@jlu.edu.cn (G. Zhang), suoqin@jlu.edu.cn (S. Zhang).

pounds using benzoylquinine as the catalyst.⁶ Good to high enantioselectivities (80–96%) were obtained. In 2009 Feng and coworkers described the chiral N,N'-dioxide catalyzed enantioselective α -chlorination of β -keto esters using NCS as the chlorine source.⁷ A series of six-membered cyclic β -keto esters with aromatic rings were obtained in high enantioselectivities (90–98%) with excellent yields (99%). One year later Díaz-de-Villegas and co-workers applied chiral amino diol derivatives in the enantioselective α -chlorination of β -keto esters.⁸ Other organic catalysts such as chiral diterpenoid alkaloid derivatives and diamino methylenemalononitrile were subsequently described in recent years.⁹ To the best of our knowledge, there are no chiral-acid organic catalysts reported in this field.¹⁰

Chiral imidodiphosphoric acids, which have a rigid chiral microenvironment due to the two chiral scaffolds, have been identified for their efficiency and ability to control the stereochemistry in many highly asymmetric transformations. ¹¹ In this work, we applied this type of catalyst in the enantioselective α -chlorination of β -keto esters and amides.

Results and discussion

Initially, we examined the background reaction between β -keto ester **1a** and NCS in toluene at 15 °C, as well as the H₈-BINOL type chiral imidodiphosphoric acid catalysts **3a–d** (2 mol%) under the same conditions (Table 1). Among them, catalyst **3b** with 3,5-bis-

^a College of Chemistry, Jilin University, Changchun 130012, PR China

^b Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130012, PR China

 $[\]ast$ Corresponding authors at: College of Chemistry, Jilin University, Changchun 130012, PR China.

Table 1Optimization of the reaction conditions.^a

Entry	Cat.	Solvent	T [°C]	Time	Yield ^b [%]	ee ^c [%]
1	=	Toluene	15	<10 min	90	0
2	3a	Toluene	15	5 min	99	-13
3	3b	Toluene	15	5 min	99	23
4	3c	Toluene	15	5 min	99	0
5	3d	Toluene	15	5 min	99	0
6	4 a	Toluene	15	5 min	99	0
7	4b	Toluene	15	5 min	99	5
8	4c	Toluene	15	5 min	99	3
9	4d	Toluene	15	5 min	99	2
10	3b	CH ₂ Cl ₂	15	5 min	99	31
11	3b	CCl ₄	15	5 min	99	34
12	3b	THF	15	5 min	99	78
13	3b	Acetone	15	5 min	99	50
14	3b	1,4-dioxane	15	5 min	99	77
15	3b	THF	0	30 min	99	82
16	3b	THF	-20	4 h	99	85
17	3b	THF	-40	10 h	99	75
18	3b	THF	-20	4 h	99	86 ^d
19 ^g	3b	THF	-20	4 h	99	88 ^e
20	3b	THF	-20	5 h	99	84 ^f

- ^a Reagents and conditions: 1a (0.1 mmol, 1.0 equiv.), NCS (0.11 mmol, 1.1 equiv.), catalyst (2 mol%), solvent (1.0 mL).
- b Isolated yield.
- ^c Determined by HPLC analysis with a Daicel ChiralPak OD-H column.("-": S, "+": R).
- d Catalyst loading 5 mol%.
- e Catalyst loading 10 mol%.
- f Reagents and conditions: 1a (1 mmol, 1.0 equiv.), NCS (1.1 mmol, 1.1 equiv.), catalyst (10 mol%), solvent (10 mL).
- The configuration of 2a and 2h was (R) as determined by comparison of the rotation and HPLC reported by Ding and co-workers.4

tri(fluoromethyl)-phenyl groups at the 3,3'-positions provided product **2a** with the (R) configuration (23% ee, 99% yield, entry 3). Interestingly, catalyst **3a** with phenyl groups at the 3,3′-positions provided product **2a** with the (S) configuration compared to the other catalysts (13% ee, 99% yield, entry 2). Disapointingly, the other two catalysts (3c and 3d) both provided racemic products. Chiral phosphoric acids 4a-d bearing the same groups as the diphosphoric acid catalysts werealso tested; the best result was 5% ee afforded by catalyst 4b which contained the same groups at the 3,3'-positions as catalyst **3b**. Then we turned our attention to solvent screening. A moderate ee (78% ee, entry 12) was obtained when THF was employed. Other polar solvents such as acetone and 1,4-dioxane resulted in ee values of 50% and 77%, respectively. Non-polar solvents such as CCl4 and CH2Cl2 did not provide good results for this reaction, giving ee values of 31% and 34%, respectively. Lowering the reaction temperature to 0 °C and $-20~^{\circ}\text{C}$ to reduce the background reaction (<10 min, entry 1) provided **2a** in 85% ee and 99% yield when the reaction was performed at $-20~^{\circ}\text{C}$, albeit with a 4 h reaction time (Entry 16). However, further lowering the temperature to $-40~^{\circ}\text{C}$, did not give a better result (75% ee, entry 17). The result slightly improved when the catalyst loading was increased to 5 mol% at $-20~^{\circ}\text{C}$ (86% ee, entry 18). Finally, the best result was obtained when the catalyst loading was increased to 10 mol% (88% ee, 99% yield, entry 19). The gramscale reaction between **1a** and NCS was also performed using the optimized condition; the ee value was slightly decreased (84% ee, 99% yield, entry 20).

With the optimized conditions in hand, the substrate scope was explored (Table 2). We found that the size of the ester group had only a minor impact on the enantioselectivity (2a-e). While the sterically bulky *tert*-butyl ester 1d gave the best result (99% yield, 95% ee), the *cyclo*hexyl ester 1e which was expected to be a good

Download English Version:

https://daneshyari.com/en/article/7828896

Download Persian Version:

https://daneshyari.com/article/7828896

<u>Daneshyari.com</u>