ELSEVIER ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Visible light-promoted metal-free aerobic oxyphosphorylation of olefins: A facile approach to β -ketophosphine oxides

Yun Shi ^{a,b,c,d}, Rongshun Chen ^{a,d}, Kang Guo ^a, Fei Meng ^a, Shujun Cao ^a, Chen Gu ^a, Yingguang Zhu ^{a,*}

- ^a Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- ^b College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- ^c Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China

ARTICLE INFO

Article history: Received 4 February 2018 Revised 13 April 2018 Accepted 17 April 2018 Available online 18 April 2018

Keywords: Visible light Photoredox catalysis Oxyphosphorylation Alkenes β-Ketophosphine oxides

ABSTRACT

A metal-free direct aerobic oxyphosphorylation of alkenes with H-phosphine oxides has been developed utilizing visible light photoredox catalysis. A variety of β -ketophosphine oxides have been obtained in good yields from simple olefins under air with inexpensive rhodamine B as the non-metallic photocatalyst. This method provides a mild, green, and practical synthetic approach to valuable β -ketophosphine oxides.

© 2018 Elsevier Ltd. All rights reserved.

Introduction

Phosphorus-containing compounds are an important class of chemicals that have broad utilities as pharmaceuticals, ¹ agrochemicals, materials, and ligands. Thus, the development of effective strategies for the C-P bond formation has attracted great attention from chemists. Among various organophosphorus compounds, β ketophosphine oxides are valuable and highly desirable synthetic targets, which can serve as potential ligands⁴ and metal-extracting agents due to their excellent metal-complexing ability.⁵ Particularly, β -ketophosphine oxides are useful synthetic precursors for the preparation of alkenes through the Horner-Wadsworth-Emmons (HWE) reaction.⁶ Furthermore, they can also be used as versatile building blocks in a variety of synthetically useful transformations.⁷ Therefore, various efficient methods have been developed to access β -ketophosphine oxides, such as the Arbuzov reaction, ⁸ the acylation of alkylphosphine oxides with stoichiometric amounts of organometallic reagents as bases, the Pd(II)-catalyzed hydration of alkynylphosphine oxides, 10 and the α -phosphorylation of arvl ketone O-acetyloximes. 11 Recently, the oxyphosphorylation of alkenes and their derivatives, ¹² cinnamic acids, ¹³ alkynes, ^{12b,14} alkynyl carboxylic acids, 14d,15 and cinnamyl/alkynyl carboxylates 16 has proven to be a powerful synthetic protocol to construct β -ketophosphine oxides. Despite great progress in this area, the development of practical, mild, green and efficient methods for the synthesis of β -ketophosphine oxides remains highly desirable.

In recent years, visible light photoredox catalysis^{17,18} has emerged as a fascinating and powerful tool in organic synthesis. Compared with ruthenium- or iridium-based photocatalysts, organic dyes have the advantages of lower cost and less toxicity. Photoredox-catalyzed reactions for the construction of C-P bonds have been achieved. ^{19,20} As part of our continuous efforts to develop alkene difunctionalization reactions, ²¹ we describe herein a visible light-induced oxyphosphorylation of simple alkenes with H-phosphine oxides under ambient air using a very cheap organic dye as the photocatalyst, thus leading to an array of β -ketophosphine oxides in good yields under mild conditions

Results and discussion

Our initial studies commenced with the reaction of 4-methylstyrene (**1a**) and diphenylphosphine oxide (**2a**) in the presence of the commercially available photosensitizer eosin B (5 mol%). The reaction was carried out in DMSO at room temperature under ambient air for 24 h under irradiation with a white LED lamp. To our delight, the desired β -ketophosphine oxide product **3a** was obtained in 34% yield (**Table 1**, entry 1). Other organic photoinitiators, including eosin Y, methylene blue, fluorescein, rose bengal,

^{*} Corresponding author.

E-mail address: ygzhu@njau.edu.cn (Y. Zhu).

^d Both authors contributed equally to this work.

Table 1Optimization of the reaction conditions.^a

Entry	Photocatalyst	Solvent	Yield (%) ^b
1	Eosin B	DMSO	34
2	Eosin Y	DMSO	58
3	Methylene blue	DMSO	31
4	Fluorescein	DMSO	42
5	Rose bengal	DMSO	19
6	Riboflavin	DMSO	24
7	Acr ⁺ -MesClO ₄	DMSO	27
8	Rhodamine B	DMSO	81
9	Rhodamine B	CH_2Cl_2	53
10	Rhodamine B	ClCH ₂ CH ₂ Cl	60
11	Rhodamine B	THF	37
12	Rhodamine B	1,4-Dioxane	62
13	Rhodamine B	CH₃CN	53
14	Rhodamine B	DMF	40
15	Rhodamine B	EtOH	52
16	Rhodamine B	i-PrOH	58
17 ^c	Rhodamine B	DMSO	79
18 ^d	_	DMSO	NR
19 ^e	Rhodamine B	DMSO	NR

- ^a All reactions were carried out with alkene **1a** (0.60 mmol), diphenylphosphine oxide **2a** (0.30 mmol), and photocatalyst (0.015 mmol) in solvent (1.8 mL) at room temperature under ambient air for 24 h under irradiation with a white LED lamp unless otherwise stated.
- ^b Isolated yield based on 2a.
- ^c With an oxygen balloon.
- d Without photocatalyst.
- ^e The reaction was conducted in the dark.

riboflavin, $Acr^+-MesClO_4^-$, and rhodamine B were also tested (Table 1, entries 2–8). Among the above photocatalysts examined, rhodamine B was found to be the best for this transformation, giving product **3a** in 81% yield (Table 1, entry 8). Further screening of solvents revealed that DMSO was superior to the others such as CH_2Cl_2 , $ClCH_2CH_2Cl$, $ClCH_2CH_2Cl$, $ClCH_3CH_2Cl$, $ClCH_3CH_3Cl$, $ClCH_3Cl$, ClC

Table 2 Substrate scope.a,b Rhodamine B (5 mol%) air, DMSO, rt, 24 h 18 W white LEDs t-Bi **3b**, 70% 3a, 81% 3c, 62% **3e**, 61% 3d, 67% 3f, 84% **3g**, 95% 3h, 64% 3i, 92% **3**j, 33% 3k, 68% 3I, 72% 3m, 67% **3o**, 64% 3n, 55%^c MeO

3q, X = F, 66% cReaction time. 36 h.

3p, X = OMe, 80%^c

3r, 63%c

3s, 0%

PrOH (Table 1, entries 9–16). A 79% yield of **3a** was obtained when an oxygen balloon was used (Table 1, entry 17). Subsequent control experiments showed that the reaction did not occur without a photocatalyst or visible light irradiation (Table 1, entries 18 and 19).

After determining the optimal reaction conditions, the generality of the visible light-promoted metal-free oxyphosphorylation was investigated. As shown in Table 2, this oxyphosphorylation can be extended to a variety of simple alkenes bearing either electron-donating or electron-withdrawing groups at the para, meta, and/or ortho positions of the phenyl ring, thus affording the corresponding products (3a-o) in mostly good to excellent yields (up to 95%). Various functionalities such as CN and Cl were compatible with this reaction, which could be employed for further synthetic transformations. 2-Naphthyl and 2-thienyl substituted olefins were effective substrates, giving the desired β -ketophosphine oxides **3k** and **3m** in 68% and 67% yields, respectively. However, the reaction of 4-nitrostyrene with diphenylphosphine oxide (2a) gave the expected product 3j in only 33% yield. It is noteworthy that aromatic internal alkenes were also tolerated in this reaction leading to the corresponding products **3n** and **3o** in satisfactory yields. β -Nitrostyrene, a highly electron-deficient internal alkene,

^a All reactions were carried out with alkene **1** (0.60 mmol), phosphine oxide **2** (0.30 mmol), and rhodamine B (0.015 mmol) in DMSO (1.8 mL) at room temperature under ambient air for 24 h under irradiation with a white LED lamp unless otherwise stated.

^b Isolated yield based on **2**.

Download English Version:

https://daneshyari.com/en/article/7829196

Download Persian Version:

https://daneshyari.com/article/7829196

<u>Daneshyari.com</u>