Tetrahedron Letters 59 (2018) 1819-1822

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Colorimetric determination of Hg²⁺ via thiosemicarbazide-to-oxadiazole transformation of a coumarin-benzopyrylium dye

Dae Sung Lim, So Young Park, Keum Saem Hwang, Suk-Kyu Chang*

Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

ARTICLE INFO

Article history: Received 10 January 2018 Revised 21 March 2018 Accepted 23 March 2018 Available online 28 March 2018

Keywords: Hg²⁺ ion Colorimetric signaling Coumarin-benzopyrylium dye Thiosemicarbazide-oxadiazole transformation Smartphone

ABSTRACT

A dual signaling reaction-based probe derived from a hybrid coumarin-benzopyrylium dye was developed for Hg²⁺ signaling. The probe exhibited selective colorimetric Hg²⁺ signaling via the Hg²⁺-induced thiosemicarbazide-oxadiazole transformation. Interference from Cu²⁺ ions was successfully circumvented using a citrate buffer as a masking agent. The detection limit for Hg²⁺ ions was found to be 1.88×10^{-7} M. Practical application to Hg²⁺ detection in simulated wastewater was realized using a typical smartphone as a stand-alone data capture and data processing device.

© 2018 Elsevier Ltd. All rights reserved.

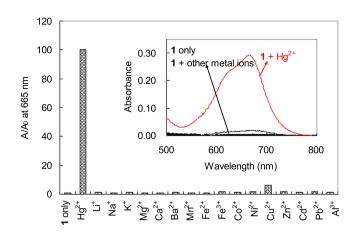
Rapid acceleration of modern industrialization has inevitably resulted in the discharge of large amounts of heavy-metal-containing wastes.¹ In addition to being notoriously toxic, heavy metals are non-biodegradable, thus persisting indefinitely in ecological systems and the food chain.² Thus, the development of selective strategies for sensing heavy metals in chemical systems, living systems, and the environment is of immense research importance.³ Standard instrumental methods such as atomic absorption spectroscopy.⁴ inductively coupled plasma-mass spectrometry,⁵ and X-ray fluorescence spectroscopy⁶ are employed for the routine analysis of trace-level heavy metals. Recently, techniques such as colorimetry⁷ and fluorescence spectroscopy⁸ have attracted considerable research interest because they are convenient and allow facile device miniaturization, and thus, field application.

The determination of mercurial species is particularly important owing to their well-known toxic impact on the environment,⁹ and a number of sophisticated optical sensors and probes have been designed.¹⁰ The Hg²⁺-induced ring-opening of spirocyclic systems such as rhodamines and fluoresceins is an especially successful strategy for this purpose. Consequently, a number of rhodamine-based hydrazides, hydrazones, and thiosemicarbazides with adjacent ligating groups such as phenol and thio-functionalized units have been developed as excellent Hg²⁺-selective sensors and probes.¹¹ Among the many intricately designed rhodamine-

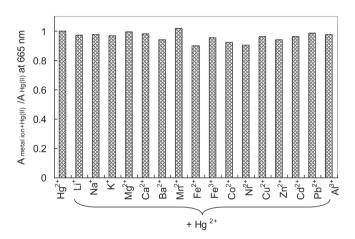
* Corresponding author. E-mail address: skchang@cau.ac.kr (S.-K. Chang). hydrazide-based Hg²⁺ probes, those exploiting the conversion of thiosemicarbazide functionalities to 1,3,4-oxadiazoles are particularly noteworthy.¹² This type of transformation has been employed for the signaling of important but toxic Hg²⁺ species¹³ as well as biologically important oxidants such as hypochlorous acid¹⁴ and nitric oxide (NO)¹⁵ using rhodamine and rhodol fluorophores.

Benzopyrylium dyes have interesting optical properties and have been used for various applications in chemical and biological fields such as laser dyes,¹⁶ organic dye-sensitized solar cells,¹⁷ solvatochromism,¹⁸ and molecular imaging.¹⁹ In particular, they have attracted research interest as near-IR-absorbing and near-IR-emitting dyes²⁰ for sensors²¹ and red-region fluorescent markers.²² Recently, a new type of hybrid dye based on the combination of coumarin and benzopyrylium subunits has been developed. However, there are relatively few reports on the use of these hybrid dyes for the construction of probes for chemical species. Two representative examples concern their use as probes for cysteine and homocysteine²³ and for the gasotransmitter hydrogen sulfide.²⁴ Other probes for detecting sulfite using selective nucleophilic addition to benzopyrylium moiety,²⁵ H_2O_2 by the conversion to carboxycoumarin via oxidative rearrangement (the Baeyer-Villiger reaction²⁶), and hydrazine via spirocyclic ring-opening and ringclosing of rhodamine moiety by hydrazide formation have been reported.27

In this paper, we report a coumarin-benzopyrylium hybrid-dyebased dual-signaling probe for the selective and sensitive determination of Hg²⁺. Signaling is realized by the Hg²⁺-triggered


thiosemicarbazide-to-oxadiazole transformation. Interference from coexisting Cu^{2+} is readily suppressed using a citrate buffer as a masking agent. Furthermore, the system was successfully applied to the determination of Hg^{2+} in simulated wastewater using a typical smartphone as a stand-alone signal capture and signal-processing device.

The basic platform of coumarin-benzopyrylium hybrid dye (**CB**) was prepared by the reaction of 2-(4-diethylamino-2-hydroxybenzoyl)benzoic acid with 3-acetyl-7-(diethylamino)coumarin in 42% yield according to the literature procedure (Scheme 1).²⁸ Treatment of **CB** with POCl₃ and subsequent reaction with hydrazine afforded the hydrazide derivative (**CB-hydrazide**) in 89% yield. Condensation of **CB-hydrazide** with acetyl thiocyanate yielded the desired thiosemicarbazide derivative **1** in 86% yield. The structures of compounds **CB**, **CB-hydrazide**, and **1** were characterized by ¹H NMR, ¹³C NMR, and high-resolution mass spectrometry.


Metal-ion-signaling experiments using probe **1** were carried out based on UV-vis and fluorescence measurements. Preliminary results using acetate-buffered solutions showed that probe 1 exhibited undesirable multiple responses toward Hg²⁺, Cu²⁺, and Ag⁺ ions (Fig. S1, Supplementary data). To improve the metal-ion selectivity of probe 1, we assayed standard chelating agents that provide discriminative responses toward specific metal ions over competing background metal ions. Among the masking agents tested, citrate ions were found to be effective. As shown in Fig. 1, the response of 1 toward Cu²⁺ in citrate-buffered solutions was greatly suppressed, allowing exclusive Hg²⁺ signaling to be realized. Meanwhile, solutions containing Ag⁺ became slightly turbid under these conditions, possibly due to the redox reaction with the citrate ions.²⁹ In citrate-buffered aqueous DMSO solution, signaling was possible under conditions containing larger than 50% water and the signal became more pronounced with increasing water content (Fig. S2, Supplementary data).

The Hg²⁺-signaling response of **1** was not significantly affected by the presence of commonly encountered environmentally important metal ions (Fig. S3, Supplementary data). The Hg²⁺-signaling response, expressed as the ratio of the absorbances in the presence and absence of competing metal ions at 665 nm $(A_{(metal ion + Hg(II))}/A_{Hg(II}))$, was virtually constant (Fig. 2).

In the current study, the Hg²⁺ signaling depends on the transformation of the thiosemicarbazide moiety of **1** to the oxadiazole moiety of **2** (Scheme 2). Experimental evidence for this Hg²⁺-induced conversion was provided by ¹H and ¹³C NMR, FT-IR, and mass measurements. In the ¹H NMR spectrum, the resonances for the two NH protons (11.71 and 11.59 ppm) and the benzopyrylium CH proton (6.53 ppm) of **1** were replaced by resonances for a single NH proton (11.71 ppm) and a benzopyrylium CH proton (9.18 ppm)

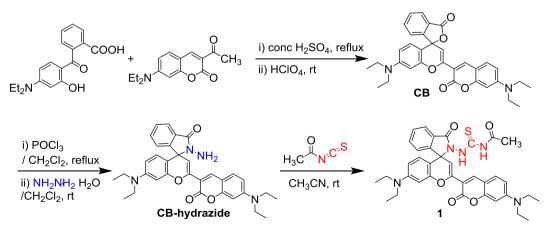


Fig. 1. Hg²⁺-selective signaling of **1** as expressed by the absorbance ratio (*A*/*A*_o) at 665 nm. Inset: UV–vis spectra of **1** in the presence of various metal ions. [**1**] = 1.5×10^{-5} M, [Mⁿ⁺] = 1.5×10^{-5} M in citrate buffer solution (pH = 6.0, 1.0×10^{-2} M) containing 10% DMSO.

Fig. 2. Hg²⁺-selective signaling of **1** in the presence of background metal ions as expressed by the absorbance ratio ($A_{(metal ion + Hg(II))}/A_{Hg(II)}$) at 665 nm. [**1**] = 1.5 × 10⁻⁵ M, [Hg²⁺] = 1.5 × 10⁻⁵ M, [Mⁿ⁺] = 7.5 × 10⁻⁵ M in citrate buffer solution (pH = 6.0, 1.0 × 10⁻² M) containing 10% DMSO.

of **2** (Fig. 3). In the ¹³C NMR spectrum, the resonances of C = S of thiosemicarbazide (183.2 ppm) and C=O of lactam (162.5 ppm) disappeared, while new carbon peaks of oxadiazole (157.9 and 159.3 ppm) emerged (Fig. S4, Supplementary data). The mass spectrum also evidenced the formation of **2** by revealing a prominent

Scheme 1. Preparation of Hg²⁺-selective thiosemicarbazide-based probe 1.

Download English Version:

https://daneshyari.com/en/article/7829376

Download Persian Version:

https://daneshyari.com/article/7829376

Daneshyari.com