Tetrahedron Letters 59 (2018) 1719-1722

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Silver-mediated radical aryltrifluoromethylthiolation of activated alkenes by S-trifluoromethyl 4-methylbenzenesulfonothioate

etrahedro

Xia Zhao^{a,*}, Bo Yang^{a,c}, Aoqi Wei^{a,c}, Jianqiao Sheng^a, Miaomiao Tian^a, Quan Li^b, Kui Lu^b

^a College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China
^b College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China

ARTICLE INFO

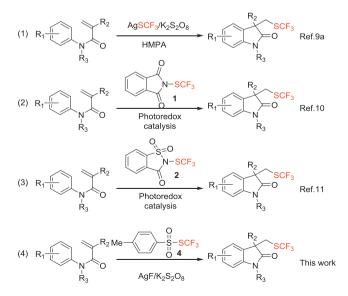
Article history: Received 25 January 2018 Revised 20 March 2018 Accepted 20 March 2018 Available online 21 March 2018

Keywords: Silver-mediated Radical Aryltrifluoromethylthiolation Activated alkenes Oxindole

ABSTRACT

Herein, we describe the preparation of trifluoromethylthiol-substituted oxindoles by silver-mediated aryltrifluoromethylthiolation of activated alkenes, using S-trifluoromethyl 4-methylbenzenesulfonothioate as a F_3CS radical source and showing that the reagent availability, mild conditions, and broad functional group compatibility of this transformation make it a viable alternative strategy of constructing C_{sp3} -SCF₃ bonds.

© 2018 Elsevier Ltd. All rights reserved.


Introduction

Trifluoromethylthiolation has recently emerged as a hot organic/medicinal chemistry research field.¹ Since the trifluoromethylthiol (CF₃S) group is highly lipophilic (Hansch parameter $\pi_R = 1.44$)² and electron-withdrawing, its incorporation into bioactive molecules can improve their cell membrane permeation ability³ and metabolic stability,⁴ which makes the development of mild and efficient trifluoromethylthiolation methods a task of high significance.

In addition to nucleophilic trifluoromethylthiolation employing $AgSCF_3$, ⁵ CuSCF_3, ⁶ or $Me_4NSCF_3^7$ as SCF_3^- sources, great progress has been made in the field of electrophilic trifluoromethylthiolation, with a series of easy-to-handle and shelf-stable trifluoromethylthiolation reagents currently being available.⁸ However, although a number of aromatic molecules have been trifluoromethylthiolated by the above nucleophilic/electrophilic reagents, the radical trifluoromethylthiolation of alkenes remains underexplored, mainly due to the limited number of reliable methods of generating the F₃CS radical. The most common F₃CS radical source, used in many impressive transformations, is AgSCF₃, which, however, is expensive and requires *in situ* oxidation by a strong oxidant to generate

* Corresponding author.

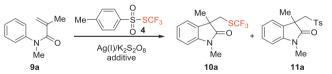
the SCF₃ radical (Scheme 1, Eq. 1).⁹ In 2016, Hopkinson et al. reported visible-light-promoted radical trifluoromethylthiolation of styrenes by 2-((trifluoromethyl)thio)isoindoline-1,3-dione (1) (Scheme 1, Eq. 2).¹⁰ Recently, Dagousset and Magnier reported visible-light-driven radical trifluoromethylthiolation of alkenes

Scheme 1. Radical aryltrifluoromethylthiolation of activated alkenes.

E-mail address: hxxyzhx@mail.tjnu.edu.cn (X. Zhao).

^c These two authors contributed equally to this work.

by *N*-trifluoromethylthiosaccharin (**2**) (Shen's reagent) (Scheme 1, Eq. 3).¹¹ However, the preparation of compounds **1** and **2** requires the use of expensive AgSCF₃ or CuSCF₃. In 2016, Shen et al. reported an elegant radical-mediated phenylsulfonyl-difluoromethylthio-1,2-difunctionalisation of alkenes by S-difluoromethyl benzenesulfonothioate (3).¹² Recently, Xu et al. reported a gold and visiblelight mediated phenylsulfonyl-trifluoromethylthio-1,2-difunctionalisation of alkenes by S-trifluoromethyl 4-methylbenzenesulfonothioate (**4**).¹³ Due to being interested in the development of efficient C–S bond construction methods,¹⁴ we herein utilised compound 4, easily prepared from trimethyl(trifluoromethyl)silane (5), N,N-diethyl-1,1,1-trifluoro-l4-sulfanamine (6), aniline (7), and sodium 4-methylbenzenesulfinate (8) in two steps,^{8a,15} as an alternative F₃CS radical source, successfully achieving silver-mediated oxidative arvltrifluoromethylthiolation of activated alkenes to produce trifluoromethylthiol-substituted oxindoles (Scheme 1. Eq. 4).


Results and discussion

Treatment of *N*-methyl-*N*-phenylmethacrylamide (**9a**) with **4** in the presence of AgNO₃, $K_2S_2O_8$, and hexamethylphosphoramide (HMPA) in dimethyl sulfoxide (DMSO) at 40 °C afforded the desired aryltrifluoromethylthiolation product **10a** (24% yield, Table 1, entry 1) and the non-desired arylsulfoxidation product **11a** (40% yield). When the reaction was carried out without HMPA, the yield of **10a** increased to 38%, with only trace amount of **11a** detected (Table 1, entry 2). To optimise the reaction conditions, various oxidants (Na₂S₂O₈, (NH₄)₂S₂O₈, *t*-BuOOH, and (*t*-BuO)₂ (Table 1, entries 3–6)) were investigated, but none of them was superior to K₂S₂O₈, with subsequent screening of silver salts (AgSbF₆, AgOTf, and AgF) showing that AgF afforded the best yield (Table 1, entries 7–9). Finally, the loading of **4** and AgF, reaction temperature, reactant concentration, and solvent were examined. When the loadings of **4** and AgF were increased from 1.2 to 1.8 equivalents, the yield of 10a increased from 42 to 58% (Table 1, entries 10 and 11). However, a further loading increase to 2.0 equivalents was counterproductive (Table 1, entry 12). Decreasing the reaction temperature to 20 °C improved the yield to 71% (Table 1, entry 13), whereas increasing the concentration of 9a from 0.083 to 0.125 M or decreasing it from 0.083 to 0.063 M diminished the yield (Table 1, entries 14 and 15). When other solvents such as acetonitrile (CH₃-CN), toluene, and 1-methylpyrrolidin-2-one (NMP) were used, no desired product was obtained, except for DMF, in which case **10a** was isolated in 34% yield (Table 1, entries 16–19). Thus, the optimised reaction conditions for the aryltrifluoromethylthiolation of 9a were as follows: 9a (0.25 mmol), 4 (0.45 mmol), AgF (0.45 mmol), K₂S₂O₈ (0.9 mmol), and DMSO (3 mL) at 20 °C.

With the optimised reaction conditions in hand, the scope of activated alkenes was investigated, with the results presented in Scheme 2. N-Methyl-N-phenylmethacryl amides 9 with both electron-donating and electron-withdrawing substituents in ortho-, meta-, and para-positions of the aniline ring (9b-91) were smoothly converted into the corresponding oxindoles. Notably, when Nmethyl-N-(pyridin-2-yl)methacrylamide (9m) and N-methyl-N-(naphthalen-1-yl)methacrylamide (9n) were employed as substrates, the desired products 10m and 10n were obtained in relatively low yields. Then, other N-substitutes-N-phenylmethacryl amides (90-9s) were tested, affording the desired aryltrifluoromethylthiolation products in moderate yields except for 9r, which was transformed into **10r** in 34% yield. Finally, α -substituted acrylamides (9t-9w) were examined, and it was found that ethyl, benzyl, and methoxymethyl substituents were tolerated, and the desired products (10t-10w) were obtained in moderate to good vields.16

Table 1

Optimisation of aryltrifluoromethylthiolation of **9a** by **4** in the presence of diverse silver salts and oxidants.^a

Entry	4/equiv.	Ag(I)/equiv.	Oxidant/equiv.	Temperature (°C)	Solvent	Yield of 10a (%) ^b
1	1.2	AgNO ₃ /1.2	K ₂ S ₂ O ₈ /3.6	40	DMSO	24 ^c
2	1.2	$AgNO_3/1.2$	$K_2S_2O_8/3.6$	40	DMSO	38
3	1.2	$AgNO_3/1.2$	Na ₂ S ₂ O ₈ /3.6	40	DMSO	Trace
4	1.2	AgNO ₃ /1.2	(NH ₄) ₂ S ₂ O ₈ /3.6	40	DMSO	29
5	1.2	$AgNO_3/1.2$	t-BuOOH/3.6	40	DMSO	0
6	1.2	AgNO ₃ /1.2	(t-BuO) ₂ /3.6	40	DMSO	0
7	1.2	$AgSbF_6/1.2$	K ₂ S ₂ O ₈ /3.6	40	DMSO	40
8	1.2	AgOTf/1.2	$K_2S_2O_8/3.6$	40	DMSO	40
9	1.2	AgF/1.2	$K_2S_2O_8/3.6$	40	DMSO	42
10	1.5	AgF/1.5	$K_2S_2O_8/3.6$	40	DMSO	55
11	1.8	AgF/1.8	K ₂ S ₂ O ₈ /3.6	40	DMSO	58
12	2.0	AgF/2.0	K ₂ S ₂ O ₈ /3.6	40	DMSO	52
13	1.8	AgF/1.8	K ₂ S ₂ O ₈ /3.6	20	DMSO	71
14	1.8	AgF/1.8	$K_2S_2O_8/3.6$	20	DMSO	58 ^d
15	1.8	AgF/1.8	$K_2S_2O_8/3.6$	20	DMSO	65 ^e
16	1.8	AgF/1.8	$K_2S_2O_8/3.6$	20	CH ₃ CN	0
17	1.8	AgF/1.8	$K_2S_2O_8/3.6$	20	Toluene	0
18	1.8	AgF/1.8	K ₂ S ₂ O ₈ /3.6	20	NMP	0
19	1.8	AgF/1.8	K ₂ S ₂ O ₈ /3.6	20	DMF	34

^a Reaction conditions: **9a** (0.25 mmol), **4** (0.3–0.5 mmol), Ag(I) salt (0.3–0.5 mmol), and oxidant (0.9 mmol) in solvent (3 mL) for 5 h at the indicated temperature. ^b Yield of isolated product after silica gel chromatography.

^c HMPA (0.125 mmol) was used as an additive.

^d DMSO (2 mL) was used.

^e DMSO (4 mL) was used.

Download English Version:

https://daneshyari.com/en/article/7829441

Download Persian Version:

https://daneshyari.com/article/7829441

Daneshyari.com