

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Digest paper

Photoredox-catalyzed C(sp²)-N coupling reactions

Xiao-De An, Shouyun Yu*

State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

ARTICLE INFO

Article history: Received 25 January 2018 Revised 9 March 2018 Accepted 19 March 2018 Available online 20 March 2018

Keywords: Photoredox catalysis Photochemistry C(sp²)-N coupling reactions Radical reactions Aryl amines

ABSTRACT

Photoredox-catalyzed radical reactions have attracted intense interest from synthetic chemists over the past several years. The photoredox-catalyzed $C(sp^2)$ -N coupling reactions, including Ullmann type C-N coupling (C-X/N-H type coupling), redox neutral C-N coupling (C-H/N-X type coupling) and oxidative C-N coupling (C-H/N-H type coupling), have been summarized in this digest.

© 2018 Elsevier Ltd. All rights reserved.

Contents

Introduction	
Ullmann type $C(sp^2)$ -N coupling reactions	
Redox neutral C(sp ²)–N coupling reactions.	
Oxidative (dehydrogenative) C(sp ²)–N coupling reactions	1609
N-Radical-triggered oxidative coupling	1609
Aryl cation radical-triggered oxidative coupling	1611
N-Radical and aryl radical-triggered radical cross-coupling	1612
Transition-metal-mediated intramolecular oxidative coupling	1613
Conclusions	1613
Acknowledgments	1613
References	1613

Introduction

Nitrogen-containing compounds exist in many biologically active molecules and natural products, ¹ and also act as functional groups in material science. ² Therefore, the development of efficient methods for the synthesis of nitrogen-containing compounds has been extensively investigated by synthetic chemists. ³

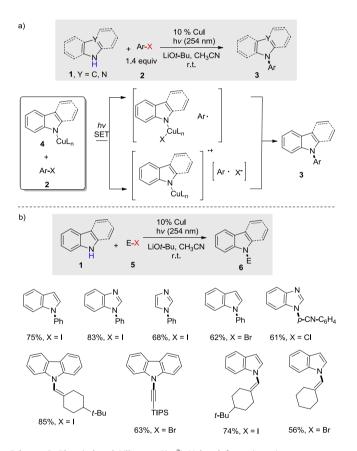
Classic methods for construct carbon–nitrogen ($C(sp^2)$ –N) bonds involve: 1) Ullmann type $C(sp^2)$ –N coupling; ⁴ 2) Buchwald-Hartwig cross coupling. ⁵ Recent years, the development of visible-light-promoted reactions offer a new approach toward $C(sp^2)$ –N bond con-

* Corresponding author.

E-mail address: yushouyun@nju.edu.cn (S. Yu).

struction via radical-triggered process. There is no doubt that novel photoredox catalyzed $C(sp^2)$ –N coupling reactions characterized with mild conditions and good functional group tolerance attract extensive interest from synthetic community. In this digest, we highlight recent progresses in the photoredox-catalyzed $C(sp^2)$ –N coupling reactions: 1) Ullmann type $C(sp^2)$ –N coupling reactions (C-X/N-H) type coupling); 2) redox neutral $C(sp^2)$ –N coupling reactions $C(sp^2)$ –N couplin

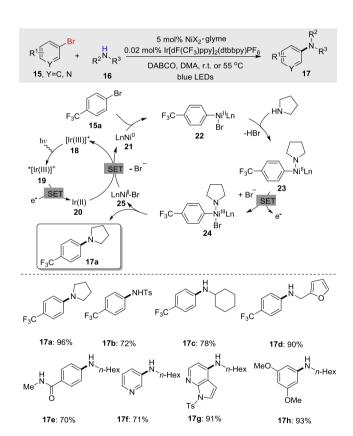
Ullmann type C(sp²)-N coupling reactions


One of major drawbacks of classic Ullmann reactions is that the reactions have to be carried out at elevated temperature. In 2012,

$$\begin{bmatrix} Ar \\ + X - [N] \end{bmatrix} + \begin{bmatrix} Ar \\ + R^{1} \cdot N \cdot R^{2} \end{bmatrix}$$

3) Oxidative (dehydrogenative) C-N coupling

$$\begin{bmatrix} Ar \\ + \\ + \\ + \\ + \\ - \\ [N] \end{bmatrix} + \begin{bmatrix} H \\ + \\ R^{1} \\ N \\ R^{2} \end{bmatrix}$$


Scheme 1. Photoredox-catalyzed C(sp²)-N coupling reactions.

Scheme 2. Photoinduced Ullmann $C(sp^2)$ -N bond formation via a copper–carbazolide complex.

Fu and Peters groups had reported an Ullmann type $C(sp^2)$ –N coupling reaction promoted by ultraviolet irradiation (Scheme 2a).⁶ Their coupling reactions were promoted by a stoichiometric or a catalytic amount of copper, which enabled the coupling of carbazolide and aryl iodides under unusually mild conditions (room temperature or even – $40\,^{\circ}$ C). An array of mechanistic studies revealed that the photo-induced $C(sp^2)$ –N bond formation proceed via a single-electron transfer (SET) process mediated by coppercarbazolide complex. When a carbon-centered radical is generated, copper-mediated $C(sp^2)$ –N bond formation can ensue.

Scheme 3. Visible-light induced coupling reaction of carbazole derivatives and aryliodides.

Scheme 4. Ni-catalyzed C(sp²)–N coupling promoted by visible light.

Later on, they expanded the scope with respect to both the nucleophiles and the electrophiles of the photo-induced coppercatalyzed process (Scheme 2b). Nitrogen-based nucleophiles (such as indoles, benzimidazoles, and imidazoles) and diverse electrophiles (e.g., hindered/deactivated/heterocyclic aryl iodides, an aryl bromide, an activated aryl chloride, alkenyl halides, and an alkynyl bromide) could serve as suitable partners and give C-N coupling products in moderate to good yields.

Kobayashi and co-workers also explored the Ullmann type C–N coupling reactions and reported a visible-light induced coupling

Download English Version:

https://daneshyari.com/en/article/7829445

Download Persian Version:

https://daneshyari.com/article/7829445

<u>Daneshyari.com</u>