Tetrahedron Letters 59 (2018) 967-970

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Direct, high-yielding, one-step synthesis of vic-diols from aryl alkynes

P. Veeraraghavan Ramachandran*, Michael P. Drolet

Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA

ARTICLE INFO

ABSTRACT

Article history: Received 13 October 2017 Revised 21 December 2017 Accepted 16 January 2018 Available online 31 January 2018

Keywords: Ammonia borane Hydroboration Alkyne 1,2-Diols Open-flask An unprecedented, high yielding, direct, one-step synthesis of *vic*-diols from alkynes has been developed *via* metal-free, open-to-air dihydroboration with ammonia borane. The electronics of the alkyne and the reaction stoichiometry are critical for obtaining optimal yields of the 1,2-diol.

© 2018 Published by Elsevier Ltd.

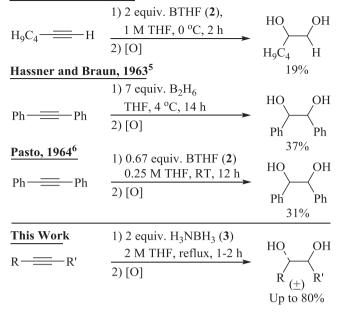
Hydroboration, discovered six decades ago, has become a mainstay in organic syntheses.¹ Despite involving pyrophoric reagents requiring strictly anhydrous conditions, some with short shelf lives, it has found myriad industrial-scale applications for the preparation of valuable intermediates and target molecules. In addition to the common borane reagents, borane-dimethyl sulfide (BMS, **1**) and borane-tetrahydrofuran (BTHF, **2**), several mono- and di-substituted alkyl-, alkoxy-, and haloboranes have been developed for hydroboration.¹ While the uncatalyzed addition of B-H bonds to alkenes is common, the corresponding reaction of alkynes has been restricted,² mostly to those involving terminal alkynes with hindered dialkylboranes.^{1,3}

Ideally, the two unsaturations in alkynes can result in as many hydroborations providing bi-functionalized molecules. On this basis, the laboratories of Brown,⁴ Hassner,⁵ and Pasto⁶ independently examined the hydroboration of alkynes with gaseous diborane or **2**. With hex-1-yne and -3-yne as substrates, Brown and Zweifel concluded that the hydroboration/oxidation of internal aliphatic alkynes resulted in ketones, whereas those of terminal alkynes formed hexan-1-ol *via* geminal diboro intermediates. Altering the oxidation conditions, they achieved 54% yield of the corresponding aldehyde and small amounts (10–12%) of the 1,2-diol.^{4,7} Subsequently, Brown developed the hydroboration of terminal alkynes with dialkylboranes for aldehyde synthesis, which has become a classic textbook reaction. Hassner, on the other hand, examined the hydroboration/oxidation of only an aromatic internal alkyne, diphenylacetylene (**4a**), with a large excess of diborane

* Corresponding author. *E-mail address:* chandran@purdue.edu (P.V. Ramachandran). bubbled through tetrahydrofuran (THF), and reported the formation of mixtures of hydrobenzoin (**6a**) and 1,2-diphenylethanol (**7a**) in low yields.^{5,8} Pasto carried out deuterium labeling studies and confirmed that terminal alkynes predominantly produce 1°ols and internal aromatic alkynes give roughly equal amounts of ketone and 1,2-diols, in low yields.⁶ All of these studies were limited in the scope of substrates and conditions, providing low amounts of vicinal diols.

Since these initial reports, there has been little effort^{9,10} to examine the dihydroboration of alkynes in detail to provide broad conclusions. As part of our program on amine-borane chemistry,¹¹ we recently reported the first open-flask, non-dissociative hydroboration of alkenes with ammonia borane (AB, **3**).¹² To expand the utility of air and moisture stable **3** as a hydroborating agent, alkynes were included as substrates to possibly achieve the direct synthesis of valuable vicinal diols in high yields.¹³ The fruitful results of this study follow (Scheme 1).

The project was initiated with the hydroboration of a representative internal alkyne, diphenylacetylene (**4a**) with 0.33 equiv **3**, in THF at room temperature. ¹¹B NMR spectroscopic analysis of an aliquot of the reaction mixture revealed no progress after 1 h. Gradual increase of the temperature, followed by analysis showed that reaction occurred only at reflux, when after 1 h, the ¹¹B NMR spectrum revealed the consumption of **3** and the presence of several overlapping peaks centered at δ –5 ppm. This suggested the formation of polymeric⁴ alkylborane-ammonia complexes, attempted separation of which failed. Nevertheless, purification of an identical reaction after alkaline H₂O₂ oxidation afforded 57% deoxybenzoin (**5a**) and 11% (±)-hydrobenzoin (**6a**), along with 19% of recovered **4a**. The recovery of a large amount of **4a**



Tetrahedror

*- 175

Brown and Zeifel, 1961⁴

Scheme 1. Hydroboration/oxidation of alkynes.

prompted the examination of the effect of stoichiometry on the reaction outcome (Table 1).

Increasing the equivalents of **3** to 0.5 resulted in an increased yield of the ketone **5a** (70%) and diol **6a** (15%), with very little recovery of **4a**. Hydroboration-oxidation with one equivalent of **3** for 5 h yielded a drastically different product distribution of 18% **5a** and 62% **6a**, with negligible recovery of **4a**. Prolonging the reaction had no effect on the outcome. Isolation of significantly larger quantity of the vicinal diol than previously reported encouraged further increases in **3** to achieve maximum yield. We hypothesized that an excess of **3** may be required for full saturation of the triple bond since the vinylborane-ammonia complex from the first hydroboration might be a slower hydroborating reagent than **3** due to steric hindrance. Utilizing 2 equiv of **3**, gratifyingly, resulted in an improved yield of **6a** (76%, Table 1, Entry 5), supporting our assumption. Further increase of **3** to 3 equiv improved the yield,

Table 1

Stoichiometry-controlled product distribution.

modestly, to 83% (Entry 6), while incurring an unacceptable loss to atom economy. In all cases, only minimal (3–4% of the isolated diol) *meso*-hydrobenzoin was detected. Thus, 2 equiv of **3** was chosen as optimal for further standardization.

Reactions were also performed in several other etheric solvents, such as 1,2-dimethoxyethane, 2-methyltetrahydrofuran, diisopropyl ether, and dioxane, with no improvement in yield.¹⁴ The effect of the reagent concentration in THF was gauged and 2 M was deemed best, providing **6a** in 79% yield. The presence of excess reagent made it difficult to determine the time required for completion by ¹¹B NMR spectroscopy. Accordingly, **3** and **4a** were heated at reflux in THF for 1 h and worked up. Gratifyingly, the product distributions remained the same (Table 1, Entry 7) as with the reaction performed for 22 h (Entry 5). This optimal condition, 2 equiv **3** in refluxing THF at 2 M for 1 h, was then applied to other alkynes, focusing initially on aryl alkynes (Table 2).

The steric and electronic environment on either side of the alkyne was varied, proceeding from doubly aromatic-substituted alkyne **4a** to singly substituted phenylacetylene (**4b**) to a mixed aryl alkyl substituted 1-phenylprop-1-yne (**4c**). The corresponding products **6b** and **6c** were isolated in 75% and 76% yields, respectively (Table 2, entries 2–3), with only the racemic *anti*-diol detected for **6c**.¹⁴ Electron-deficient 4-fluorophenylacetylene (**4d**) and 4-(trifluoromethyl)phenylacetylene (**4e**) were subjected to hydroboration with **3** and diols **6d** and **6e** were isolated in 78% yield each (Table 2, entries 4–5).

Adding a methyl substituent at the *ortho-* (**4f**), *meta-* (**4g**), and *para-* (**4h**) positions of phenylacetylene provided the diols **6f–h** in 71%, 70%, and 68% yields, respectively (Table 2, entries 6–8). This effect of the electron-donating group was even more apparent for 4-methoxyphenylacetylene (**4i**), with the isolation of only 54% of **6i** (Table 2, Entry 9). We expected that even electron-rich aliphatic alkynes would behave in a similar manner to **4i**.¹⁵ Indeed, when a terminal aliphatic alkyne dec-1-yne (**4j**) was submitted to these conditions (Table 2, Entry 10), only 36% of diol **6j** was isolated with 48% of decan-1-ol (**7j**) as the major product. This points to preferential geminal dihydroboration for electron-rich alkynes as reported previously.^{4,6} Similarly, dec-5-yne (**4k**) resulted in low yields (53%) of the racemic, *anti-* (±)-5,6-decanediol (**6k**).

The generality of the preference for vicinal dihydroboration, as seen with **3**, was explored by treating **4a** with other common hydroborating reagents (Table 3).

	1) 3 (equiv.)	_	
	1 M THF, reflux	K O	HO OH
Ph-==-	-Ph>	Pl	$1 + \sum_{i=1}^{\infty} (\pm)$
	2) NaOH, H ₂ O ₂	Ph >	Ph Ph
4a		5a	¹¹¹ 6a ¹¹¹

Entry	3 (equiv.) ^a	Time ^b (h)	Recovery 4a (%) ^c	Yield 5a (%) ^c	Yield 6a (%) ^c
1	0.33	1	19	57	11
2	0.5	3	3	70	15
3	1	5	4	18	62
4	1	22	3	22	64
5	2	22	3	7	76
6	3	28	3	6	83
7	2	1	3	6	78

^a Concentration with respect to 4a.

^b Time required for complete consumption of **3** by hydroboration or thermal decomposition as determined by ¹¹B NMR spectroscopy.

^c Isolated yield.

Download English Version:

https://daneshyari.com/en/article/7830138

Download Persian Version:

https://daneshyari.com/article/7830138

Daneshyari.com