[Tetrahedron Letters 59 \(2018\) 1023–1027](https://doi.org/10.1016/j.tetlet.2018.01.084)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of star-shaped pyrrole-based C_3 -symmetric molecules via ring-closing metathesis, Buchwald–Hartwig cross-coupling and Clauson–Kaas pyrrole synthesis as key steps

etrahedror

Sambasivarao Kotha *, Saidulu Todeti, Tarasankar Das, Anindya Datta

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India

article info

Article history: Received 26 December 2017 Revised 24 January 2018 Accepted 28 January 2018 Available online 31 January 2018

Keywords: Trimerization Ring-closing metathesis Buchwald–Hartwig cross-coupling reaction Clauson–Kaas pyrrole synthesis

ABSTRACT

We have demonstrated three contrasting synthetic strategies to assemble pyrrole-based C_3 -symmetric molecule. Here, ring-closing metathesis (RCM), Buchwald–Hartwig cross-coupling and Clauson–Kaas pyrrole synthesis have been used as key steps. Interestingly, readily available starting materials such as 4-aminoacetophenone, 4-bromo acetophenone and 4-nitro acetophenone have been used as starting materials. Grubbs' first generation catalyst (G-I) is useful for one-pot RCM and aromatization sequence without the involvement of additional reagents. We also report photophysical properties of these starshaped molecules.

2018 Elsevier Ltd. All rights reserved.

Introduction

Trimerization of carbonyl compounds is instrumental to assemble C_3 -symmetric star-shaped molecules and they are found to be useful core units in conjugated dendrimers¹ and branched oligomers. $1,2$ Moreover, conjugated star-shaped molecules have been used in liquid crystals, 3 photovoltaics, 4 organic field-effect transistors (OFETs), $1b,5$ organic light-emitting diodes (OLEDs), $1b,6$ electroluminescent devices^{2a} and organic solar cells.^{6a,7} Several C_3 -symmetric molecules containing heterocycles (eg: carbazole, and N-heterocyclic carbenes) have been synthesized and utilized in electro-optical materials, and separation science. 8 As part of our major program aimed at designing star-shaped C_3 -symmetric molecules,^{1a,9} here, we conceived new strategies to pyrrole-based C3-symmetric molecules.

Synthesis of pyrrole derivatives is of great interest due to their applications in material science and pharmaceutical area. In addition, a number of biologically important molecules contain pyrrole as a core unit (Fig. 1).^{[10](#page--1-0)} For example, pyrrole moieties have played an important role in haemoglobin function to carry the oxygen in living organisms.^{[11](#page--1-0)} Pyrrole derivative, atorvastatin is used for reducing the cholesterol level and ketorolac has been used as nonsteroidal anti-inflammatory drug (NSAID). 12 12 12

The metathesis strategy has emerged as one of the most useful tool for the carbon-carbon bond formation in synthetic organic chemistry. Ring-closing metathesis (RCM) is well suited to prepare the cyclic olefins in high yield.¹³ With the advent of structurally well-defined ruthenium based metathesis precatalysts ([Fig. 2\)](#page-1-0) during the last two decades, assembly of heteroaromatics by intra and intermolecular C-C bond formation has gained momentum.^{[14](#page--1-0)}

In view of the importance of pyrroles, we conceived several strategies to C_3 -symmetric molecule 4 containing three pyrrole units. To the best of our knowledge there is no report available in the literature to the synthesis of pyrrole-based C_3 -symmetric star-shaped molecules. In our approach, pyrrole-based C_3 -symmetric star-shaped molecules are assembled by RCM, Buchwald–Hart-wig cross-coupling^{[15](#page--1-0)} and Clauson–Kaas pyrrole synthesis¹⁶ as key steps. We also studied photophysical properties of these C_3 -symmetric molecules.

Strategy

The retrosynthetic strategy to pyrrole-based star-shaped com-pound 4 is shown in [Fig. 3.](#page-1-0) C_3 -Symmetric star-shaped compound 4 could be assembled from hexa-allyl derivative 3 via RCM followed by aromatization. The hexa-allyl derivative 3 could be assembled from di-allyl ketone 2 by trimerization sequence which can be derived from readily available 4-amino acetophenone (1) (path A). Alternatively, C_3 -symmetric product 4 could be assembled

[⇑] Corresponding author. E-mail address: srk@chem.iitb.ac.in (S. Kotha).

Fig. 1. Bio-active molecules containing pyrrole moieties.

Fig. 2. Selected list of ruthenium-based metathesis catalysts.

from C_3 -symmetric tri-bromide 5 (Fig. 3) via Buchwald–Hartwig cross-coupling reaction. However, the tri-bromo derivative 5 can be derived from a readily available 4-bromo acetophenone (6) by trimerization sequence. These three distinctly different approaches provide several opportunities to expand the chemical space of C_3 symmetric pyrrole derivatives. Finally, application of three fold Clauson–Kaas pyrrole synthesis starting with 5 can generate the target compound 4.

Results and discussion

To realize the strategy shown in Fig. 3 (Path A), commercially available 4-amino acetophenone (1) was treated with allyl bromide in the presence of sodium hydride (NaH) in dimethylformamide (DMF) at room temperature for 1 h which delivered the N,N'-diallyl product 2 (68%). Then, the di-allyl compound 2 was subjected to trimerization sequence with thionylchloride $(SOCl₂)$ in EtOH under reflux condition to generate the trimerized product 3 in 42% yield. To improve the yield of the compound 3, we choose another route. In this regard, we prepared tri-amine derivative **9** by using literature procedure.^{[17](#page--1-0)} Star-shaped tri-amine derivative 9 was subjected to N-allylation by using allyl bromide in the presence of NaH in DMF at room temperature for 2 h to give the hexa-allyl product 3 in 72% yield. Later, it was treated with Grubbs first generation catalyst $(G-I)$ in $CH₂Cl₂$ at room temperature for 2 h to obtain the ringclosing metathesis (RCM) product 4 (84%) which underwent aromatization. The major driving force for facile dehydrogenation sequence under the reaction conditions is the gain in aromatization energy ([Scheme 1](#page--1-0)). Such type of non-metathetic behaviour of Grubbs catalyst is known in the literature.^{[18](#page--1-0)} Nota-bly, earlier approach to pyrroles^{[19](#page--1-0)} involving RCM require separate step for aromatization. Interestingly, our approach involving G-I catalyst does not require aromatization step which is better sustainable sequence.

Later, alternate routes were developed to this star-shaped pyrrole containing compound 4. In this regard, compound 9 was reacted with 1,4-dimethoxy tetrahydrofuran (10) in acetic acid under reflux condition for 6 h to deliver the pyrrole-based C_3 -symmetric compound 4 in 63% yield ([Scheme 2](#page--1-0)).

In another route, we prepared the tri-bromo derivative 5 by using the literature procedure from commercially available 4 bromo acetophenone (6) .²⁰ Subsequently, the tri-bromo compound 5 was subjected to Buchwald–Hartwig cross-coupling reaction with pyrrole (11) in the presence of potassium carbonate (K_2CO_3) and, copper powder in dimethyl sulfoxide (DMSO) at 130 \degree C under inert atmosphere to obtain the star-shaped molecule 4 in 68% yield ([Scheme 3\)](#page--1-0). The approaches demonstrated here start with simple

Fig. 3. Retrosynthetic routes to pyrrole-based C_3 -symmetric star-shaped molecule 4.

Download English Version:

<https://daneshyari.com/en/article/7830184>

Download Persian Version:

<https://daneshyari.com/article/7830184>

[Daneshyari.com](https://daneshyari.com)