Tetrahedron Letters 59 (2018) 541-545

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Asymmetric organocatalytic direct Mannich reaction of acetylacetone and isatin derived ketimines: Low catalyst loading in chiral cinchonasquaramides

^a Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey

ARTICLE INFO

Article history: Received 6 December 2017 Accepted 29 December 2017 Available online 30 December 2017

Keywords: Asymmetric organocatalysis Mannich reaction 3-Amino-2-oxindole Isatin ketimine Bifunctional squaramide

ABSTRACT

A highly enantioselective synthesis of 3-amino-2-oxindoles by direct Mannich reaction between acetylacetone and *N*-carbamoyl isatin ketimine has been described herein. Corresponding chiral adducts were obtained in high yields (up to 98%) and with excellent enantioselectivities (up to >99% ee) by very low (1 mol%) catalyst loading of 2-adamantyl substituted bifunctional cinchona-squaramide.

© 2017 Elsevier Ltd. All rights reserved.

Introduction

Structure-based approach in medicinal chemistry and chemical biology focuses on classification of bioactive compounds and their structural relationships to determine the smallest chemical probes that may serve as drug candidates.¹ Within a vast majority of drug precursors, chiral α -tertiary amines are privileged structures for being in the skeleton of many natural products and biologically active compounds.² Specifically, 3-aminooxindole moiety has been encountered as the core entity of many architecturally complex natural products and pharmaceuticals such as AG-041R gastrin/ CCK-B receptor agonist,^{3a} CRTH2 antagonist as anti-bacterial agent and an anti-tuberculosis agent,^{3b} vasopressin V_{1b} receptor antagonist SSR-149,415 which is used in treatment of anxiety and depression,^{3c} an anti-malarial agent NITD609,^{3d} HIV-1 protease inhibitor^{3e} and an anti-mycobacterial against *M. tuberculosis* H37Rv^{3f} (Fig. 1). Hence various stereoselective approaches for the construction of 3-amino-2-oxindole derivatives bearing a tetrasubstituted stereocenter have been developed.⁴ To the best of our knowledge, these synthetic strategies include asymmetric addition to isatin imines,⁵ intramolecular α -arylation of amides,⁶ alkylation of 3-aminooxindole,⁷ amination of 3-substituted oxindoles,⁸ and multicomponent reaction.⁹ Specifically, direct Mannich reaction in which an enolizable carbonyl compound reacts with

* Corresponding author. E-mail address: tanyeli@metu.edu.tr (C. Tanyeli). isatin ketimine is one of direct methods to obtain 2-oxindole derived tertiary amines.^{5d,10,11} Initially, Yan et al.^{5d} reported a study in which quinine-thiourea organocatalyst afforded

Fig. 1. Representative examples of biologically active compounds containing 3-amino-2-oxindole skeleton.

Excelor

etrahedror

etter

o-(o+ o+

Scheme 1. Previous studies.

products in good yields and enantioselectivities up to 98% ee 1). In 2016, examination of squaramide (Scheme organocatalysis,¹² pioneered by Rawal and co-workers,¹³ by Rao et al. resulted in satisfying enantiopurity and chemical yield as well.¹⁰ Also, a camphor derived 1,3-diamine organocatalyst was tested in a representative reaction of acetylacetone and N-methyl

3a

Table 1

Optimization studies.^a

ĤΝ MeO .CF₃ OMe ĊF-R : 1-adamantyl (I) $\textbf{X}:(S)\left(\textbf{IV}\right)$: 2-adamantyl (II) : *t*-butyl (III) : (O) (V) NBoc NHBoc Catalyst \cap 0 DCM, 0.1 M Ňе Me 1a 2

Entry	Catalyst	Catalyst loading	Solvent	Conc. (M)	Time (h)	Yield % ^b	ee % ^c
1	Ι	5	DCM	0.1	24	98	96
2	II	5	DCM	0.1	2	99	99
3	III	5	DCM	0.1	24	87	97
4	IV	5	DCM	0.1	24	94	89
5	V	5	DCM	0.1	24	92	93
6	II	2	DCM	0.1	3	99	99
7	II	1	DCM	0.1	8	99	99
8	II	0.5	DCM	0.1	22	88	93
9	II	0.5	DCM	0.2	22	99	98
10	II	0.5	DCM	0.3	22	99	98
11	II	1	Toluene	0.1	7	97	99
12	II	1	Et ₂ 0°	0.1	3	92	99
13	II	1	EtOAc	0.1	7	93	98
14	II	1	CH ₃ CN	0.1	24	92	98
15	II	1	THF	0.1	24	90	94

Reaction conditions: ketimine (0.05 mmol, 0.1 M in solvent) and acetylacetone (0.05 mmol).

^b Isolated yields are reported.

^c Determined by HPLC equipped with chiral column.

Desired product precipitates in the solvent.

Download English Version:

https://daneshyari.com/en/article/7830675

Download Persian Version:

https://daneshyari.com/article/7830675

Daneshyari.com