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a b s t r a c t

Artificial viscosity in SPH-based computations of impact dynamics is a numerical artifice that helps
stabilize spurious oscillations near the shock fronts and requires certain user-defined parameters.
Improper choice of these parameters may lead to spurious entropy generation within the discretized
system and make it over-dissipative. This is of particular concern in impact mechanics problems wherein
the transient structural response may depend sensitively on the transfer of momentum and kinetic
energy due to impact. In order to address this difficulty, an acceleration correction algorithm was
proposed in Shaw and Reid (“Heuristic acceleration correction algorithm for use in SPH computations in
impact mechanics”, Comput. Methods Appl. Mech. Engrg., 198, 3962e3974) and further rationalized in
Shaw et al. (An Optimally Corrected Form of Acceleration Correction Algorithm within SPH-based
Simulations of Solid Mechanics, submitted to Comput. Methods Appl. Mech. Engrg). It was shown that
the acceleration correction algorithm removes spurious high frequency oscillations in the computed
response whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks
and layers with sharp gradients. In this paper, we aim at gathering further insights into the acceleration
correction algorithm by further exploring its application to problems related to impact dynamics. The
numerical evidence in this work thus establishes that, together with the acceleration correction algo-
rithm, SPH can be used as an accurate and efficient tool in dynamic, inelastic structural mechanics.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical modeling of dynamic response of structures under
ballistic impacts has always challenged the ingenuity of researchers
mainly owing to the presence of layers with sharp gradients.
Element-based methods, employing the weak form of the gov-
erning equations, have a long and successful history in many
branches of engineering and science. However, the requirements of
continuity of the field variables within an element, finiteness of the
element domain and bijections between undeformed and
deformed elements limit their applications to impact dynamic
problems that often involve very large or discontinuous deforma-
tions, material fragmentation and separation caused by cracks.
Such limitations have been a motivation for particle-based
methods (i.e., those not relying on element-based discretization),
of which the smoothed particle hydrodynamics (SPH) is by far the
most prominent one [1,7,8]. The domain discretization in SPH is

through a set of particles, which interact with each other through
a kernel function such that at every particle location the conser-
vation equations are satisfied. Over the last decade, several
attempts [3,9,16] have been made to explore the potential of SPH in
problems related to impact mechanics.

In the standard SPH computation, in order to capture the sudden
jump in the physical quantity and promote the numerical stability,
an artificial viscous term is added in the linear momentum balance
equation. The basic physical attribute corresponding to artificial
viscosity is numerical dissipation, i.e. it converts kinetic energy to
internal energy. The strength of the artificial viscosity can be
controlled by certain user-defined parameters, called the artificial
viscosity parameters. If artificial viscosity yields numerically stable
yet minimally dissipated solutions, its strength is said to be
“optimum”. The parameter values that optimize the strength of
artificial viscosity depend on such factors as particle distribution,
intensity of the shock etc. and therefore are not known a-priori.
Unfortunately there is no standard set of such parameters that
work for a wide range of problems. The common practice is to
choose some arbitrary values of these parameters irrespective of
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the computational data (particle distribution, kernel function,
smoothing length etc.) and nature of the response. Improper choice
of these parameters may lead to an excessive loss of kinetic energy,
making the system overedissipative and thus the predictions
physically unreal [4,13,14,15]. By way of an attempt to overcome
this limitation, an acceleration correction algorithm (AC) was
proposed by Ref. [13] and later rationalized by Shaw and Reid
(2010). The essence of the method is to assess the change in the
acceleration due to the artificial viscosity term and then correct the
computed acceleration by subtracting a convex approximation of
the ‘changed’ acceleration. The strength of the correction term in
the momentum balance equation was optimized by taking
a spatially varying response-dependent support size of kernel
function through which the correction term is computed. Through
limited numerical experiments, it was demonstrated in [13,14] and
Shaw et al. (2010) that the acceleration correction algorithm, while
stabilizing the numerical solution without much unwanted dissi-
pation, also bypasses the need any user specified viscosity
parameters.

While the limited nature of numerical evidence, obtained so far
with the acceleration correction algorithm, is suggestive of its
broader applicability to a large class of problems in impact
dynamics, a more conclusive proof of this observation can only be
had through its further numerical exploration towhich the present
paper is mainly devoted. The superior performance of the SPH
with acceleration correction algorithm vis-à-vis the SPH with
standard artificial viscosity is thus discussed through several
numerical examples. In the original formulation of the acceleration
correction algorithm [13,14] and its subsequent development [15],
the scheme was applied to the Monaghan type artificial viscosity
as it was the most widely used form in SPH computations in solid
mechanics. In this work, the acceleration correction algorithm is
viewed as an add-on which can be usefully employed with any
form of artificial viscosity. In order to numerically demonstrate
this, the algorithm is applied to two other forms of artificial
viscosity viz. tensor product artificial viscosity by Owen [12] and
a combined form of bulk viscosity and Von Neumann-Richtmyer
viscosity as used by Hernquist L and Katz [2].

The paper is organized as follows. In Section 2, the main steps
involved in SPH with acceleration correction algorithm are briefly
outlined. The undesirable effect of the artificial viscosity and the
efficacy of the acceleration correction algorithm to remove
a significant part of it, in the context of some classical elastice-
plastic problems in dynamic structural mechanics, are discussed in
Section 3. Extension of the acceleration correction algorithm to
other form of artificial viscosity is given in Section 4. Conclusions
are then drawn in Section 5.

2. SPH with acceleration correction

The SPH algorithm, corrected for acceleration, is briefly outlined
in this section. For a more comprehensive description, readers are
referred to [6,7,13,14] Shaw et al. (2010).

2.1. Governing equations

The conservation equations for continuum mechanics are given
by

dr
dt

¼ �r
vvb

vxb
; (1)

dva

dt
¼ �1

r

vsab

vxb
; (2)

de
dt

¼ �sab

r

vva

vxb
; (3)

and
dxa

dt
¼ va; (4)

where, for any material point, denotes its mass density and r the
specific internal energy. na and sab are respectively elements of the
velocity vector and Cauchy stress tensor (symmetric), xa is the
spatial coordinate, d/dt is the time derivative taken in the moving
Lagrangian frame and the superscripts a,b ¼ 1,2,3 are integer
indices for the three spatial directions.

2.2. Constitutive model

The stress components in Eq. (3) may be written in terms of
hydrostatic and deviatoric stresses as,

sab ¼ Pdab � Sab (5)

where, P and Sab are respectively the scalar pressure and compo-
nents of the traceless symmetric deviatoric stress tensor. The
pressure in Eq. (5) may be calculated through an equation of state
(EOS). Presently, we adopt the following EOS wherein pressure is
assumed to vary linearly with the compression ratio.

PðrÞ ¼ K
�
r

r0
� 1

�
(6)

The components of Sab may be obtained from the Jaumann
stress rate, given by,

_S
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�
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�
þ Sag _R

bg þ Sab _R
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(7)

m is the shear modulus and dab is the Kronecker delta. The

components _3ab of the symmetric strain rate tensor and _R
ab

of the
skew symmetric spin tensor are given by

_3ab ¼ 1
2
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2.2.1. Plasticity and yield criterion
In this paper, whenever plasticity is taken into account, the

material is assumed to be elastic-perfectly-plastic and the flow
régime is determinedbyVonMises yield criterion. At every time step,
the secondstress invariant, J2 ¼ SabSab, is checkedand if

ffiffiffiffi
J2

p
exceeds

the yield stress sy=
ffiffiffi
3

p
(where sy is the uniaxial yield stress), the

individual stress components are returned to the yield surface using

Sab/fSab (10)

where f ¼ min

(
syffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3SabSab
p ;1

)
: (11)

Effective plastic strain increment is given by,

D 3
ab
p ¼ 1� f

3m
Sab (12)
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