Tetrahedron Letters 58 (2017) 4699-4702

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of functionalized 4-nitroanilines by ring transformation of dinitropyridone with enaminones

etrahedro

Saki Naito^a, Soichi Yokoyama^{a,b}, Haruyasu Asahara^{a,b,c}, Nagatoshi Nishiwaki^{a,b,*}

^a School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
^b Research Center for Material Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
^c Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

ARTICLE INFO

Article history: Received 27 September 2017 Revised 29 October 2017 Accepted 2 November 2017 Available online 8 November 2017

Keywords: Ring transformation Nitroaniline Dinitropyridone Enaminone Bicyclic intermediate

ABSTRACT

2-Functionalized 4-nitroanilines were readily synthesized by ring transformation using 3,5-dinitro-2pyridone and enaminones prepared from 1,3-dicarbonyl compounds and amines. Modification of the amino group and the *ortho*-position could be achieved by simply changing the enaminones. Using this strategy, functional groups such as acetyl, benzoyl, and ethoxycarbonyl groups could be introduced into the nitroaniline framework.

© 2017 Elsevier Ltd. All rights reserved.

Ring transformation is one of the most powerful methods for constructing versatile ring systems. Besides the Diels-Alder-type¹ and degenerate-type² ring transformations, nucleophilic-type reactions have recently been recognized as the third type of ring transformation mechanisms.³ 1-Methyl-3,5-dinitro-2-pyridone (1) can be used as a suitable substrate for this type of reaction because of its high electrophilicity and the partial structure, nitroacetamide, which serves as a good leaving group.³ Indeed, pyridone **1** efficiently reacts with ketones and ammonium acetate in a three-component ring transformation to afford 4-nitroanilines **2**′, which possesses alkyl/aryl groups at the 2- and 6-positions, in moderate to high yields (Scheme 1a).⁴ It was also possible to modify the amino group of nitroanilines by using a combination of amine and acetic acid instead of ammonium acetate (Scheme 1b).⁴

The presence of both the electron-donating amino group and the electron-withdrawing nitro group creates a biased electron density in the molecule, which sometimes shows intramolecular charge transfer. This electronic property plays an important role in nonlinear optical materials.⁵ Therefore, the above ring transformation is a useful protocol for the construction of a compound library of diverse nitroaniline derivatives that can be further utilized for the development of new functional materials. However,

* Corresponding author at: School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. *E-mail address*: nishiwaki.nagatoshi@kochi-tech.ac.jp (N. Nishiwaki). only small amounts of the functionalized nitroanilines **3**' were obtained when 1,3-dicarbonyl compounds were used instead of ketones because of side reactions (Scheme 1c). These results prompted us to design a new ring transformation using dinitropy-ridone **1** and enaminones **4** that are readily prepared from 1,3-dicarbonyl compounds and amines.

When a solution of 1 and 4a in ethanol was heated at 80 °C for 1 day, a trace amount of the ring-transformed products, 2-ethanoyl-4-nitro-N-propylaniline (3a) and 4-nitro-N-propylaniline (5a), were detected in the reaction mixture (Table 1, Entry 1). It was confirmed that the latter product 5a was not formed by the deacetylation of **3a**, as no reaction occurred upon treatment of isolated 3a under the same reaction conditions. Several bases were used as the additive (Entries 2-10). Addition of propylamine accelerated the reaction and increased the yield of 3a (Entry 2). Triethylamine also revealed a similar effect; it was found that the addition of 1 equiv. of the amine was sufficient and led to completion of the reaction (Entries 3 and 4). When the reaction time was prolonged to two days, pyridone 1 was completely consumed and the yield of **3a** had increased to 57% (Entries 5 and 6). No positive effect was observed when the bulkier tributylamine and less nucleophilic 2,6-lutidine were used (Entries 7 and 8). On the other hand, inorganic bases such as potassium carbonate and cesium carbonate decomposed pyridone **1** without the formation of any detectable ring-transformed products (Entries 9 and 10).

Scheme 1. Three component ring transformations affording substituted 4-nitroanilines.

This reaction was also influenced to some extent by the choice of the solvent. The yield of the deacetylated product **5a** increased when the reaction was conducted in methanol (Entry 11). Although the less nucleophilic 2-propanol and hexafluoro-2-propanol (HFIP) solvents suppressed the side reactions, the yield of **3a** also decreased (Entries 12 and 13). A reaction temperature of 100 °C was rather effective in increasing the yield of **3a**, however, competitive decomposition of the substrates occurred at higher temperature (Entries 14 and 15).

The reaction could be conducted in one-pot without isolating of enaminone **4a**, which simplified the experimental manipulations (Scheme 2). After heating a mixture of propylamine and acetylace-tone at 80 °C without a solvent for 3 h, the resultant mixture was

Table 1

Optimization of reaction conditions for the synthesis of nitroaniline 3a.

Scheme 2. One-pot synthesis of nitroaniline 3a.

dissolved in ethanol. Then, dinitropyridone **1** and triethylamine were added, and the solution was heated at 100 °C for 1 day, which afforded nitroaniline **3a** in a comparable yield with the obtained from the reaction using isolated enaminone **4a**.

This synthetic protocol was also applicable to enaminone **4b**, which was derived from a diketone and a secondary amine. Although enaminone **4b** is not stabilized by an intramolecular hydrogen bond, it exhibited a higher reactivity than **4a** (Table 2). This reaction was also accelerated by adding diethylamine, and the yield of **3b** increased up to 85% when the reaction was conducted at 80 °C (Entries 1–3). The addition of triethylamine again revealed an accelerating effect (Entries 4–7). A one-pot reaction including the preparation of **4b** *in situ* was also possible, although the yield of **3b** decreased to 43%, which is presumably because the enaminone **4b** had not formed in a sufficient amount.

Under the optimized conditions, the synthesis of other types of nitroanilines **3** was studied by altering the enaminones **4** prepared by using other amines and 1,3-dicarbonyl compounds (Table 3). Bulky alkyl groups such as *sec*-butyl and *tert*-butyl and aryl groups such as phenyl and anisyl were introduced on the amino group of **3** (Entries 1–4). As shown in Table 2, enaminone **4b** derived from a secondary amine was also highly reactive. Indeed, the pyrrolidino-substituted enaminone **4g** efficiently reacted with dinitropyridone **1** to afford the corresponding nitroaniline **3g** in a high yield (Entry 5). The intramolecular hydrogen bond in enaminones derived from primary amines contributes to their stabilization, but might also diminish their reactivity for this reaction.

Entry	Additive	Solv.	Temp.	Time	Yield (%)	
	(1 equiv.)		(°C)	(d)	3a	5a
1	None	EtOH	80	1	1	2
2	PrNH ₂	EtOH	80	1	22	3
3	NEt ₃	EtOH	80	1	36	2
4	NEt ₃ ^a	EtOH	80	1	29	1
5	PrNH ₂	EtOH	80	2	52	2
6	NEt ₃	EtOH	80	2	57	7
7	NBu ₃	EtOH	80	2	45	7
8	2,6-Lutidine	EtOH	80	2	5	2
9	K ₂ CO ₃	EtOH	80	2	0	5
10	Cs ₂ CO ₃	EtOH	80	2	0	1
11	NEt ₃	MeOH	80	1	40	20
12	NEt ₃	<i>i</i> -PrOH	80	1	28	1
13	NEt ₃	HFIP ^b	80	1	6	1
14	NEt ₃	EtOH	100	1	63	9
15	NEt ₃	EtOH	120	1	56	8

^a 2 equiv.

^b Hexafluoro-2-propanol.

Download English Version:

https://daneshyari.com/en/article/7831285

Download Persian Version:

https://daneshyari.com/article/7831285

Daneshyari.com