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a b s t r a c t

Analytical expressions for penetration of a long rigid projectile with a nose shape of an ovoid of Rankine
into a semi-infinite incompressible elasticeperfectly-plastic target have been developed earlier. Using
these expressions it is shown that the drag force applied by the target on the projectile can be
approximated as a bilinear function of the square of the penetration velocity in terms of three non-
dimensional constants {Sc, ac, bmax}. The value of Sc characterizes the constant value of the drag force
for low penetration velocities. Cavitation (separation of the target material from the projectile’s surface)
first occurs when the penetration velocity reaches a value associated with ac. The parameter bmax

controls the dependence of the drag force on the square of the penetration velocity as the separation
point on the projectile’s surface approaches its tip. Analytical expressions for these constants are
determined in terms of the material parameters of the target material. Also, a simple formula for the
penetration depth is developed and a method is proposed for determining the constants {Sc, ac, bmax}
directly from experimental data.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Backman and Goldsmith [3] document scientific interest in
penetration mechanics from the beginning of the 19th century and
a collection of experimental data can be found in [2]. Here, atten-
tion is limited to the case of a rigid projectile penetrating a semi-
infinite incompressible elasticeperfectly-plastic target. Fig. 1
shows a typical axisymmetric projectile which has a nose that
smoothly transitions to a circular cylinder of radius R. The projectile
moves with velocity V in the negative e3 direction without rotation
so the balance of linear momentum for the motion is given by

M _V ¼ �F; (1)

where M is the projectile’s mass and F is the drag force applied in
the positive e3 direction by the target material on the projectile.
Letting s be the instantaneous depth of penetration and using the
specifications

V ¼ _s; Vð0Þ ¼ V0; sð0Þ ¼ 0; (2)

it is convenient to introduce the normalized variables

S ¼ F
pR2Y

; a ¼ rV2

Y
; a0 ¼ rV2

0
Y

; l ¼ 2rpR2s
M

: (3)

Then, multiplying Eq. (1) by V yields

_a ¼ �S _l;
da
dl

¼ �S: (4)

In these expressions, V0 is the impact velocity, and {r, Y} are,
respectively, the constant density and yield strength (in uniaxial
stress) of the target. Moreover, S is the normalized drag force that
the target applies to the projectile, a is a normalized inertia (kinetic
energy) in the target and l is the normalized instantaneous depth
of penetration.

Hill [6] describes research done between May 1943 and March
1946 on cavitation during penetration of a rigid projectile into
metal. He notes that due to melting at the projectile’s surface the
effects of friction are negligible. Consequently the traction vector
t applied by the target material on the projectile can be
approximated as a contact pressure P applied in the opposite
direction to the outward unit normal n to the projectile’s surface
(see Fig. 1)

t ¼ �Pn: (5)E-mail address: mbrubin@tx.technion.ac.il.
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Using this expression S is given by

S ¼ 2
R2Y

ZR
0

P rdr: (6)

For long projectiles and deep penetration into thick targets the
effect of the entrance phase, cavitation at the projectile’s tail and
the transient development of the plastic region can be neglected to
obtain asymptotic expressions for P and S. Typical expressions for
these quantities found in the literature can be written in the forms

P ¼ YðPY þ PIaÞ; S ¼ SY þ SIa; (7)

where {PY, SY} characterize the effects of plasticity in the target and
{PI, SI} characterize the effects of inertia in the target.

In his analysis of the effects of cavitation Hill [6] suggested that
PY in Eq. (7) is reasonably constant and that it can be estimated
using static solutions for cavity expansion of the type developed in
[5]. In particular, for expansion of a spherical cavity Bishop et al. [5]
developed the expression

PY ¼ 2
3

�
1þ ln

�
2G
Y

��
; (8)

where use has been made of the relationship between the shear
modulus G, Young’s modulus E and Poisson’s ratio n given by

G ¼ E
2ð1þ nÞ: (9)

In addition, Hill [6] proposed an expression for PI of the form

PI ¼ k
d
dx

�
r
dr
dx

�
; (10)

where k is a positive non-dimensional empirical constant and x is
an axial coordinate measured from a material point in the projec-
tile. For convenience, here x is specified by

x ¼ z� z3ðtÞ �
R
2
; �R

2
� x � �R

2
þ L; _z3ðtÞ ¼ �V ; (11)

where z3(t) denotes the axial location of the projectile’s tip (see
Fig. 1) and L is its length. Since the projectile’s nose smoothly
transitions to a circular cylinder at its tail it follows that

dr
dx

¼ 0 for x ¼ �R
2
þ L: (12)

Moreover, Hill [6] confined attention to nose shapes for which

r
dr
dx

¼ 0 for x ¼ �R
2
: (13)

An important consequence of expression (10) is that for values
of the penetration velocity V (related to a) less than a critical value
Vc (related to ac), the contact pressure remains non-negative over
the entire curved surface of the projectile so the target material
remains in contact with the projectile until its tail with no cavita-
tion near the projectile’s nose

P � 0 for � R
2
� x � �R

2
þ L with a < ac: (14)

Next, assuming that PY is constant, Eq. (10) can be substituted into
Eq. (6) and use can be made of Eqs. (6), (7), (12) and (13) to deduce
that

SY ¼ PY ; SI ¼ 0 for a < ac: (15)

This means that for penetration velocities V less than the critical
value Vc (a< ac) the drag force is constant. Rosenberg and Dekel [9]
confirmed this empirical result by analyzing details of a series of
numerical simulations of nearly rigid projectiles with different nose
shapes. Also, Rapoport and Rubin [8] used simplifications of
expressions developed in [12] for a projectile with the shape of an
ovoid of Rankine to prove this result analytically. Moreover, Rapo-
port and Rubin [8] pointed out that this constant value of drag is not
expected using cavity expansion models for which the influence of
inertia in the target on the drag force is always non-negative.

Next, using expressions (7) and (10) with PY constant, it follows
that cavitation (separation) occurs at the location x¼ xs and the
value a¼ as when the pressure P(xs) vanishes so that

PðxsÞ ¼ Y ½PY þ PIðxsÞas� ¼ 0 0 as ¼ � PY
PIðxsÞ

with

x ¼ xs and x ¼ xs; (16)

where x is the normalized radius of the projectile

x ¼ r
R
: (17)

The value ac is the minimum value of as which occurs when x¼ xc

ac ¼ minðasÞ with x ¼ xc: (18)

In Eqs. (16) and (18) it has been convenient to introduce the
non-dimensional variables {xs, xc} to characterize the values of the
radius at the point of cavitation. For higher values of the penetra-
tion velocity (a� ac) the drag force is obtained by integrating only
over the portion of the projectile’s surface that is in contact with the
target. Again, assuming that PY is constant it follows that both
plasticity and inertia in the target influence the normalized drag
force so that

S ¼ SY ðxsÞ þ SIðxsÞa for a � ac; (19)

where the functions {SY, SI} depend on the normalized separation
point xs and are given by

SY ðxsÞ ¼ x2sPY ; SIðxsÞ ¼ kx2s

�
dr
dx

ðxsÞ
�2

: (20)

In particular, it is important to note that since xs depends on the
penetration velocity through the solution of Eq. (16), the drag force
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Fig. 1. Sketch of the nose region of a rigid projectile penetrating an incompressible
elasticeperfectly plastic target.
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