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a b s t r a c t

In this paper, a previously developed meso-scale model for concrete, called the Confinement Shear
Lattice (CSL) model, is extended in order to include the effect of loading rate on concrete strength and
fracturing behavior. The rate dependence of concrete behavior is assumed to be caused by two different
physical mechanisms. The first is a dependence of the fracture process on the rate of crack opening, and
the second is the viscoelastic deformation of the intact (unfractured) cement paste. In this study, the first
mechanism is described by the activation energy theory applied to the ruptures occurring along the crack
surfaces, whereas the second mechanism is modeled by the MicroprestresseSolidification theory. The
developed model is calibrated and validated on the basis of experimental data gathered from the
literature.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Failure and fracturing behavior of concrete are very often treated
as time-independent phenomena. This approach, however, is
acceptable onlyas anapproximation. In reality, the timedependence
is negligible only in a certain range of load duration referred to as
short term (or quasi-static) and pertaining to usual material testing
lasting a few minutes. On the contrary, it is important for dynamic
(impact) loading lasting a few milliseconds and for long-term (sus-
tained) loading lasting for many years.

Under impact loading the influence of the loading rate on
concrete behavior becomes an important parameter that must be
taken into account in order to have reasonable results. It is gener-
ally reported that when the strain rate increases, the ultimate stress
(strength), the elastic (secant) modulus, and the peak strain
increase (see, among many others, Refs. [1,2]). Under sustained
loading, on the other hand, viscoelastic deformations (creep)
develop even at constant load and failure can occur at stress levels
below the usual quasi-static strength [3].

To simulate correctly the dynamic and viscoelastic response of
concrete structures with the inclusion of strain-rate effect, it is
essential to adopt a computational model that simulates reliably
the transition between diffuse damage, crack initiation, and crack

propagation. Such a complex scenario is strongly influenced by
concrete heterogeneity and it calls for the adoption of a meso-scale
model in which heterogeneity is explicitly simulated.

Many meso-scale models can be found in the literature for the
simulation of concrete behavior and, in particular, for the simula-
tion of fracture propagation. Each of them has its own advantages
and disadvantages. In the studies of Roelfstra et al. [4], Wittmann
et al. [5] and, more recently, Carol et al. [6], concrete is modeled as
a three-phase material (aggregate inclusions, mortar matrix, and
interface between them), each phase being discretized through
finite elements with appropriate material properties. These models
describe with great accuracy the interaction between matrix and
inclusions, but are almost prohibitive from a computational point of
view. Lattice and particle models use a different approach in which
the continuum is replaced by a system of discrete elements (rigid
particles, truss members, beam members, etc.). Noteworthy
examples of lattice and particle models can be found in Refs.
[7e13]. These models can handle well the displacement disconti-
nuity associatedwith fracture and they have been very successful in
simulating tensile crack initiation and propagation in concrete.

In this study, a meso-scale model of concrete previously
developed by the author is adopted and extended to include strain-
rate effects. This model, called the ConfinementeShear Lattice
model [14], is able to simulate tensile fracture as well as damage in
compression and it has been extensively calibrated and validated in
the quasi-static regime [15e17]. The quasi-static formulation of this
model is highlighted in the next section.
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2. Review of the ConfinementeShear Lattice (CSL) model

The ConfinementeShear Lattice (CSL) model is a meso-scale
model simulating the mechanical interaction among coarse
aggregate pieces in concrete. The geometry of the model is
obtained from the basic properties of the mix-design. Given the
aggregateecement ratio, a/c, the cement content, c, the sieve
curve, and a certain volume of material, V, the number ni of
aggregate pieces whose characteristic size lies in a specified size
interval of average size Di can be calculated: ni ¼ jiMa/ravi, where
vi ¼ pD3

i =6 is the volume of one aggregate piece, ji is the ratio
between the mass of aggregate with characteristic size Di and the
total mass of aggregate, Ma¼(a/c)cV, and ra is the mass density of
aggregate.

The aggregate pieces (particles), assumed to be of spherical
shape, are randomly placed in the volume one-by-one through
a try-and-reject procedure ensuring that each particle does not
overlap with the other particles and is completely contained within
the volume of interest [7]. The Delaunay algorithm [18] is then used
to connect the centers of the particles through a three-dimensional
lattice. Each ridge of the Delaunay tetrahedra identifies a lattice
strut connecting two adjacent particles. The cross-sectional area of
the lattice struts is defined such that the total volume of the struts
corresponds to the considered volume of material (see Ref. [14] for
more details).

Along each connecting strut, a point (interaction point), at
which the forces between the two adjacent particles (of size D1 and
D2) are imagined to be transmitted, is defined such that the strut
length l is subdivided into two lengths l1 ¼ lD1/(D1 þ D2) and
l2 ¼ lD2/(D1 þ D2) (Fig. 1a).

The kinematics of the model is defined assuming that: 1) the
axial velocity, _u, is linearly distributed between the particle centers
(lattice nodes), and 2) the transverse velocities _v; _w are the effect of
a rigid motion corresponding to the translational and rotational
velocities at particle 1, for side 13, and at particle 2 for side 24 (see
Fig. 1a). The transversal velocities at the interaction point can be
then computed as _v3 ¼ _v1 þ l1 _w1, _v4 ¼ _v2 � l2 _w2, _w3 ¼ _w1 � l1 _41

and _w4 ¼ _w2 þ l2 _42, where _4 and _w are the rotational nodal
velocities orthogonal to the axis of the lattice strut.

The velocity field is then used to define appropriate measures of
strain rates at the interaction point: _3N ¼ ð _u2 � _u1Þ=l, _3M ¼
ð _v4 � _v3Þ=l ¼ ð _v2 � _v1 � l2 _w2 � l1 _w1Þ=l and _3l ¼ ð _w4 � _w3Þ=l ¼
ð _w2 � _w1 þ l2 _42 þ l141Þ=l, where N is the direction coaxial with the
connecting strut andM, L are twomutually orthogonal directions in
the plane of the strut cross section.

Finally, the CSL formulation is completed by a constitutive
relation characterizing the behavior of the particle interface at the
interaction point. Following Ref. [14] normal and shear stresses, are
assumed to be proportional to normal and shear strains through
damage-like constitutive equations:

sN ¼ s3N=3; sM ¼ sa3M=3; sL ¼ sa3L=3; (1)

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2N þ s2T Þ=a2

q
¼ effective stress, sT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2M þ s2L

q
¼

shear stress, 3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32N þ a232T

q
¼ effective strain, and 3T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32M þ 32L

q
¼

shear strain, and a is a material parameter discussed later.
The initial elastic behavior can be formulated through a linear

elastic relationship between the effective stress and the effective
strain: s ¼ E03. In this case, from Eq. (1) one has sN ¼ E03N,
sM ¼ aE03M, and sL ¼ aE03L. As one can see the material parameter
a represents the ratio between the shear elastic stiffness and the
normal elastic stiffness. In Ref. [15] a was shown to control the
macroscopic Poisson’s ratio n: for a ¼ 0.25 one obtains n z 0.18.

The elastic modulus E0 must be computed preserving the
different elastic properties of the aggregate pieces and the
embedding mortar matrix. Assuming a series coupling, we have

E0 ¼ Ecl=ðrla þ lcÞ (2)

where Ec is the normal elastic modulus of the embedding mortar,
r ¼ Ec/Ea is the ratio between the normal elastic moduli of the
embedding mortar and aggregate, la¼(D1 þ D2)/2 and lc ¼ l � la.

The stressestrain evolution remains elastic as long as the
effective stress s does not reach a certain strength limit. Afterwards

Fig. 1. a) Schematic representation of the lattice strut connecting two adjacent aggregate particles; b) Rate dependent cohesive law; c) Strain-rate dependent linear stressestrain
law; d) CSL elastic domain and its rate dependence.
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