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a b s t r a c t

The free vibration analysis of non-local orthotropic Kirchhoff plates has been investigated. Kirchhoff
plates at the micro/nanoscale are modeled using Eringen's nonlocal elasticity theory, where the small
scale effect is taken into consideration. The governing equations are derived using the nonlocal differ-
ential constitutive relations of Eringen. For this purpose, the resulted eigenvalue problem is solved nu-
merically by applying the Chebyshev collocation method. The effects of the the Winkler modulus
parameter, the shear modulus parameter, the aspect ratio, the taper, the nonlocal scale coefficient, and
the boundary conditions on the natural frequencies have been studied.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Micro- and nano-structures have gained appreciated con-
sideration due to their significant role in different engineering and
modern technology fields such as aerospace, communications,
composites, electronics, microelectromechanical and nanoelec-
tromechanical systems. These structures have superior mechan-
ical, electrical, and thermal properties when compared with other
structures at the normal length scale. These properties make them
ideal to be used in highly sensitive and high frequency devices for
different applications [1]. However, some manufactured micro and
nano-structures have non-uniformities in the geometry, such as
the variation in the thickness that may affect the dynamical be-
havior of these structures.

To provide weight reduction for greater structural efficiency,
and for more efficient vibration control, tapered beams and plates
can be used. Moreover, to increase the strength to weight ratio,
orthotropic plates with different fiber orientations are commonly
used in several industrial applications such as civil and aerospace
structures. Furthermore, these structures may be resting on or
embedded in elastic foundations (medium). However, to date, no
report has been found in the literature on the vibration response
of non-uniform orthotropic nonlocal plates resting on linear elastic

foundation. Motivated by these considerations and in order to
improve the design of MEMS/NEMS, the aim of this article is to
study the free vibration of nonlocal, non-uniform plates resting on
elastic foundation.

In the present article, Eringen's nonlocal elasticity theory is
applied to study the small-scale effect on the free vibrations of
non-uniform orthotropic Kirchhoff plates resting on a Pasternak
foundation. The governing equation is derived using Eringen's
non-local constitutive relations along with Hamilton's principle.
The Chebyshev collocation method is applied for the numerical
solution of the governing differential equation, by transforming it
to a system of algebraic equations. The system is expressed in a
compact form by the Chebyshev differentiation matrices and the
use of the Kronecker product. The present formulation allows
considering the variable coefficients of the differential equation in
a convenient way. In this study, the variable coefficients represent
the distribution of the plate's thickness and it's derivatives. The
results from the present article can be used for design and opti-
mization of different non-uniform nano-devices embedded in
elastic medium. Furthermore, the present analyses may help in the
study of vibration response of non-uniform nanodevices (that can
be modeled as plates) when used as mechanical resonators and
vibrating components.

It is known that the experimental and atomistic simulations
and models are capable to show the effects of the small-scale on
the mechanical properties of the micro/nanostructures, however,
these methods are expensive and restricted by computational

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2016.05.008
0020-7403/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: maen.sari@gju.edu.jo (M.S. Sari),

wael.alkouz@gju.edu.jo (W.G. Al-Kouz).

International Journal of Mechanical Sciences 114 (2016) 1–11

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2016.05.008
http://dx.doi.org/10.1016/j.ijmecsci.2016.05.008
http://dx.doi.org/10.1016/j.ijmecsci.2016.05.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2016.05.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2016.05.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2016.05.008&domain=pdf
mailto:maen.sari@gju.edu.jo
mailto:wael.alkouz@gju.edu.jo
http://dx.doi.org/10.1016/j.ijmecsci.2016.05.008


capacity. Since the local continuum theories for beams (Euler and
Timoshenko) and plates (Kirchhoff and Mindlin) are scale free,
therefore they are not able to capture the small scale effect on the
mechanical, electrical, and thermal properties for very small beam
and plate like structures. This makes them inadequate in de-
scribing the dynamical behavior for these structures [2]. In order
to apply the continuum mechanics approach in the analysis of the
micro and nanostructures, logical and reasonable modifications
that take into consideration the scale effect, should be proposed.
For this purpose, several theoretical models have been suggested.
Among these, the strain gradient theory, the modified coupled
stress theory, and the nonlocal elasticity theory [3] that will be
utilized in this article to analyze the free vibration problem of
nonlocal orthotropic Kirchhoff plates resting on elastic foundation.

Many researchers applied the nonlocal elasticity theory to
study the free vibration, buckling, deflection, and dynamic pro-
blems of micro and nanostructures. For example, Shahidi et al. [4]
carried out the transverse vibration analysis of non-uniform or-
thotropic Kirchhoff plates using the nonlocal elasticity theory and
the variational principle. It was concluded that the thickness var-
iation has a noticeable effect on the natural frequencies of the
plates. Furthermore, Murmu and Pradhan [5] studied the vibration
response of nonuniform cantilever beam utilizing the nonlocal
elasticity theory. They applied the differential quadrature method
to obtain the natural frequencies. Reddy [6] obtained analytical
solutions for the bending, buckling, and vibration problems for
simply supported Euler, Timoshenko, Reddy, and Levinson beams
using Eringen’s nonlocal theory. Murmu and Adhikari [7] studied
the nonlocal transverse in-phase and out-of-phase vibrations of
double nanobeam systems, in which explicit closed form expres-
sions for natural frequencies were derived. Shakouri et al. [8] ap-
plied the Galerkin approach to study the free vibration problem of
nonlocal Kirchhoff plates with different boundary conditions. It
was shown that the nonlocal parameter and Poisson’s ratio have
significant effects on the vibration. Wang et al. [2] applied the
Hamilton’s principle, Eringen’s nonlocal elasticity theory, and Ti-
moshenko beam theory to analyze the free vibration problem of
micro/nanobeams. Their study concluded that the effects of small
scale, rotary inertia, and transverse shear deformation are im-
portant on the vibration behavior of short and stubby micro/na-
nobeams. Other researchers applied the nonlocal elasticity theory
to study the scale effect on different dynamical systems [9–20].

2. Theory

2.1. Chebyshev spectral collocation

The Chebyshev or the Gauss-Chebyshev-Lobatto points are the
points that represent the projections on the interval [�1, 1] of
equally spaced points of a unit circle. These points are numbered
from right to left as shown in Fig. 1 [21], and defined by
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The Chebyshev collocation method can be applied to solve or-
dinary or partial differential equations (ODEs or PDEs), by re-
presenting the nth derivative of a function by Dn¼(DN)n.

The Chebyshev collocation method was successfully employed
to carry out the free vibration analysis of local continuous systems
with different shapes, geometries, and boundary conditions [22–
25].

2.2. Nonlocal theory

The nonlocal elasticity theory was introduced by Eringen [3]
accounts for the small-scale effects arising at the nanoscale level.
In his work, the stress at a point is assumed to be as a function of
the strains at all points in the domain. Many researchers applied
the nonlocal elasticity theory to study the free vibration, buckling,
deflection, and dynamic problems of micro and nanostructures.
The small-scale effects and the atomic forces become of great
importance in designing, optimizing, and improving the perfor-
mance of micro and nano structure materials. For such materials,
the internal length scales of the material are comparable to the
structure size. Moreover, a long range cohesive force exists among
the particles in addition to the contact forces and the heat diffu-
sion. Consequently, the internal length scale should be considered
as a material parameter which is called nonlocal parameter, this
parameter should be taken into account in both of the governing
equations as well as the constitutive relations.

For non-local linear elastic solids, the stress tensor tij is defined
by

∫ ( ) ( ) ( )α σ= ′ − ′ ′ ( )t x x x dV x 3ij
V

ij

where x is a reference point in the elastic domain, and ( )α ′ −x x is
the non-local kernel attenuation function. It introduces the non-
local effects at the reference point x produced by the local stress σij

at any point x′, and ′ −x x is the distance in Euclidean form.
In order to simplify Eq. (1), Eringen introduced a linear differ-

ential operator ς, defined by ς¼ ( )− ∇e l1 0
2 2, in which e0 is a

material constant estimated by experiments or other models and
theories. The non-local theory relations could result in approx-
imate solutions to those obtained by atomic theory. The value of e0

was taken to be 0.39 in Eringen’s analysis. Moreover, the con-
stantlrepresents the internal characteristic length which is of the

Fig. 1. Chebyshev Points.
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